Уровень звуковой мощности дба. Единицы измерения уровня шума. Что такое «децибел»

Нередко граждане, особенно городские жители, жалуются на излишний шум в квартирах и на улице. Особенно раздражает он (шум) в выходные и ночью. Да и днем радости от него мало, особенно если в квартире находится маленький ребенок.

Как эксперты, так и интернет едины в своих советах – нужно вызвать участкового. Но перед тем как обратиться к представителю правоохранительных органов, необходимо хотя бы примерно разбираться с уровнями шума, при которых такое обращение оправдано, а какое является лишь раздражающим фактором, но под запрет не попадает.

Допустимые уровни шума в жилых помещениях

Регулируется он законодательными актами, согласно которым время суток делится на периоды и для каждого периода допустимый уровень шума различен.

  • 22.00 – 08.00 период тишины, во время которого указанный уровень не должен превышать 35-40 децибел, (именно в них считается данный показатель).
  • С восьми утра до десяти вечера по закону относится к светлому времени суток и шуметь можно чуть сильнее – 40-50 дБ.

Многие интересуется, а почему такой разброс в дБ. Все дело в том, что федеральные власти дали только примерные значения, а каждый регион устанавливает их самостоятельно. К примеру, в некоторых регионах, в частности, в столичном, днем существуют дополнительные периоды тишины. Обычно это промежуток от 13.00 до 15.00. Несоблюдение тишины в этот срок является нарушением.

Стоит сказать, что под нормами понимается тот уровень, который не может нанести никакого вреда человеческому слуху. Но многие не понимают, что означают указанные показатели. Поэтому даем сравнительную таблицу с уровнями шума и с тем, с чем сравнить.

  • 0-5 дБ – ничего или почти ничего не слышно.
  • 10 – этот уровень можно сравнить с небольшим шелестом листвы на дереве.
  • 15 – шелест листвы.
  • 20 – еле слышный человеческий шепот (на примерном расстоянии в один метр).
  • 25 – уровень, когда человек разговаривает шепотом на расстоянии пары метров.
  • 30 децибел с чем сравнить? – громкий шепот, ход часов на стене. Согласно нормативам СНиП, данный уровень является максимально допустимым в ночное время в помещениях, относящихся к жилым.
  • 35 – примерно на этом уровне ведется разговор, правда, на приглушенных тонах.
  • 40 децибел – обычная речь. СНиП определяет этот уровень как допустимый для дневного времени.
  • 45 – также стандартный разговор.
  • 50 – звук, который издает пишущая машинка (старшее поколение поймет).
  • 55 – с чем можно сравнить этот уровень? Да то же самое, что и верхняя строка. Кстати, согласно евронормам, данный уровень является максимально допустимым для офисов класса А.
  • 60 – уровень, определяемый законодательством для обычных офисов.
  • 65-70 – громкие разговоры на расстоянии в один метр.
  • 75 – человеческий крик, смех.
  • 80 – работающий мотоцикл с глушителем, также это уровень работающего пылесоса с двигателем мощностью в 2 кВт и более.
  • 90 — звук, издаваемый грузовым вагоном при движении по железке и слышный на расстояний в семь метров.
  • 95 – это звук вагона метро при движении.
  • 100 – на этом уровне играет оркестр духовых, работает бензопила. Звук такой же мощности издает гром. По евростандартам это максимально допустимый уровень для наушников плеера.
  • 105 – такой уровень допускался в пассажирских авиалайнерах до 80-х гг. прошлого столетия.
  • 110 – шум, издаваемый летящим вертолетом.
  • 120-125 –звук работающего на расстоянии в один метр отбойника.
  • 130 – столько децибел выдает стартующий самолет.
  • 135-145 – с таким шумом взлетает реактивный самолет либо ракета.
  • 150-160 – сверхзвуковой самолет пересекает звуковой барьер.

Все перечисленное условно делится по уровню воздействия на человеческий слух:

  • 0-10 – ничего или почти ничего не слышно.
  • 15-20 – еле слышно.
  • 25-30 – тихо.
  • 35-45 – уже довольно шумно.
  • 50-55 – отчетливо слышно.
  • 60-75 – шумно.
  • 85-95 – очень шумно.
  • 100-115 – крайне шумно.
  • 120-125 – почти невыносимый уровень шума для человеческого слуха. Работающие отбойным молотком рабочие в обязательном порядке должны надевать специальные наушники, иначе потеря слуха обеспечена.
  • 130 – это так называемый болевой порог, звук выше для человеческого слуха уже фатален.
  • 135-155 – без защитного снаряжения (наушники, шлемы) у человека наступает контузия, травмы мозга.
  • 160-200 – гарантирован разрыв барабанных перепонок и, внимание, легких.

Свыше 200 децибел можно даже не рассматривать, так как это смертельный уровень звука. Именно на таком уровне действует так называемое шумовое оружие.

Что еще

Но и меньшие показатели могут привести к необратимым травмам. К примеру, длительное воздействие на слух звука в 70-90 децибел оказывает на человека пагубное воздействие, в частности, на ЦНС. Для сравнения – обычно это громко играющий телевизор, уровень музыки в автомобиле у некоторых «любителей», звук в наушниках плеера. Хотите еще слушать громкую музыку – будьте готовы к тому, что впоследствии придется долго лечить нервы.

А если шум превышает показатель в 100 децибел, то потеря слуха практически гарантирована. Да и как показывает практика, от музыки на таком уровне больше негатива, чем удовольствия.

В Европе запрещено размещать много оргтехники в одном помещении, особенно если комната не отделана звукопоглощающими материалами. Ведь в небольшом помещении два компьютера, факс и принтер могут поднять уровень шума до 70 дБ.

Вообще на рабочем месте максимальный уровень шума может быть не более 110 дБ. Если где-то он превышает 135, то на этом участке запрещается любое пребывание человека, даже кратковременное.

При превышении уровня шума на рабочем месте 65-70 дБ рекомендуется носить специальные мягкие беруши. Если они изготовлены качественно, то должны уменьшить внешний шум на 30 дБ.

Изолирующие наушники, продаваемые в строительных магазинах, не только обеспечивают максимальную защиту практически от любого шума, но и защитят височную долю головы.

И в заключение скажем одну интересную новость, которая кому-то может показаться смешной. Статистика показала, что городской житель, живущий в режиме постоянного шума, попав в зону полной тишины, где уровень шума не превышает 20 дБ, начинает испытывать дискомфорт. Да что говорить, у него начинается депрессия. Вот такой вот парадокс.

Физическая характеристика громкости звука - уровень звукового давления, в децибелах (дБ). «Шум» - это беспорядочное смешение звуков.

Максимально допустимые уровни звука (LАмакс, дБА) - больше "нормальных" на 15 децибел. Например, для жилых комнат квартир допустимый постоянный уровень звука в дневное время - 40 децибелов, а временный максимальный - 55.

Неслышный шум - звуки с частотами менее 16-20 Гц (инфразвук) и более 20 КГц (ультразвук). Низкочастотные колебания в 5-10 герц могут вызывать резонанс, вибрацию внутренних органов и влиять на работу мозга. Низкочастотные акустические колебания усиливают ноющие боли в костях и суставах у больных людей. Источники инфразвука: автомобили, вагоны, гром от молнии и т.д. Высокочастотные колебания вызывают нагрев тканей. Эффект зависит от силы звука, расположения и свойств его источников.

Сильно шуметь могут мощные вентиляторы на хлебопекарнях, мельницах и других предприятиях, где используется вытяжка, а ветер дует с их стороны - волнообразно увеличивает дальность распростанения. Возможная причина их шума - неправильная установка и сама конструкция, раздолбанные подшипники, нарушение центровки, элементарная изношенность оборудования. За это могут оштрафовать.

Высокочастотный звук и ультразвук с частотой 20-50 килогерц, с модуляцией на несколько герц - применяются для отпугивания птиц с аэродромов, животных (собак, например) и насекомых (комаров, мошкары).

На рабочих местах предельно допустимые эквивалентные уровни звука для прерывистого шума: максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБАI. Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе.

Шум, издаваемый компьютером, принтером и факсом в комнате без звукопоглощающих материалов - может превышать уровень 70 db. Поэтому не рекомендуется размещать много оргтехники в одном помещении. Слишком шумное оборудование должно выноситься за пределы помещения, где располагаются рабочие места.

Снизить уровень шума можно, если использовать шумопоглощающие материалы в качестве отделки помещения и занавески из плотной ткани. Помогут и противошумные бируши для ушей.

При возведении зданий и сооружений, в соответствии с современными, более жесткими требованиями звукоизоляции, должны применяться технологии и материалы, способные обеспечить надёжную защиту от шума.

Для пожарной сигнализации: уровень звукового давления полезного аудиосигнала, обеспечиваемый оповещателем, должен быть не менее 75 дБА на расстоянии 3 м от оповещателя и не более 120 dba в любой точке защищаемого помещения (п.3.14 НПБ 104-03).

Сирена большой мощности и корабельный ревун - давит больше 120-130 децибел.

Спецсигналы (сирены и "крякалки" - Air Horn), устанавливаемые на служебном транспорте, регламентируются ГОСТ Р 50574 - 2002. Уровень звукового давления сигнального устройства при подаче специального звук. сигнала, на расстоянии 2 метра по оси рупора, должен быть не ниже:

116 дБ(А) - при установке излучателя звука на крыше транспортного средства;

122 дБА - при установке излуч-ля в подкапотное пространство автотранспорта.

Изменения основной частоты должны быть от 150 до 2000 Гц. Продолжительность цикла - от 0, 5 до 6, 0 с.

Клаксон гражданского автомобиля, согласно ГОСТ Р 41.28-99 и Правил ЕЭК ООН №28, должен издавать непрерывный и монотонный звук с уровнем акустического давления не более 118 децибел. Такого порядка максимально допустимые значения - и для автосигнализации.

Если городской житель, привыкший к постоянному шуму, окажется на некоторое время в полной тишине (в сухой пещере, например, где уровень шума - менее 20 db), то он вполне может испытать депрессивные состояния вместо отдыха.

Прибор шумометр для измерения уровня звука, шума.

Для измерения уровня шума применяется прибор шумомер, который производят в разных модификациях: бытовые (ориентировочная цена - 3-4 т.р, диапазоны измерения: 30-130 дБ, 31, 5 Гц - 8 кГц, фильтры А и С), промышленные (интегрирующие и т.д.) Наиболее распространённые модели: SL, октава, svan. Для измерений инфразвуковых и ультразвуковых шумов применяются широкодиапазонные шумометры.

Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. С учётом этого, неравномерную чувствительность человеческого уха к звукам разных частот модулируют с помощью специального электронного частотного фильтра, получая, в результате нормирования измерений, так называемый эквивалентный (по энергии, "взвешенный") уровень звука с размерностью дБА (дБ(А), то есть - с фильтром "А").

Человек может слышать звуки громкостью от 10-15 дБ и выше. Максимальный диапазон частот для человеческого уха - от 20 до 20 000 Гц. Лучше слышен звук с частотой 2-3 КГц (обычен в телефонах и по радио на СВ и ДВ диапазонах). С возрастом, воспринимаемый на слух звуковой диапозон сужается, особенно для высокочастотных звуков, уменьшаясь до 18 килогерц и менее.

В случае отсутствия на стенах помещений звукопоглощающих материалов (ковров, специальных покрытий), звук будет громче из-за многократного отражения (реверберации, то есть - эха от стен, потолка и мебели), что увеличит уровень шума на несколько децибел.

Шкала шумов (уровни звука, децибел), в таблице

Децибел,
дБА

Характеристика

Источники звука

Ничего не слышно

Почти не слышно

Почти не слышно

тихий шелест листьев

Едва слышно

шелест листвы

Едва слышно

шепот человека (на расстоянии 1 метр).

шепот человека (1м)

шепот, тиканье настенных часов.
Допустимый максимум по нормам для жилых помещений ночью, с 23 до 7 ч.

Довольно слышно

приглушенный разговор

Довольно слышно

обычная речь.
Норма для жилых помещений, с 7 до 23 ч.

Довольно слышно

обычный разговор

Отчётливо слышно

разговор, пишущая машинка

Отчётливо слышно

Верхняя норма для офисных помещений класса А (по европейским нормам)

Норма для контор

громкий разговор (1м)

громкие разговоры (1м)

крик, смех (1м)

Очень шумно

крик, мотоцикл с глушителем.

Очень шумно

громкий крик, мотоцикл с глушителем

Очень шумно

громкие крики, грузовой железнодорожный вагон (в семи метрах)

Очень шумно

вагон метро (в 7 метрах снаружи или внутри вагона)

Крайне шумно

оркестр, вагон метро (прерывисто), раскаты грома

Максимально допустимое звуковое давление для наушников плеера (по европейским нормам)

Крайне шумно

в самолёте (до 80-х годов ХХ столетия)

Крайне шумно

вертолёт

Крайне шумно

пескоструйный аппарат (1м)

Почти невыносимо

отбойный молоток (1м)

Почти невыносимо

Болевой порог

самолёт на старте

Контузия

Контузия

звук взлетающего реактивного самолета

Контузия

старт ракеты

Контузия, травмы

Контузия, травмы

Шок, травмы

ударная волна от сверхзвукового самолёта

При уровнях звука свыше 160 децибел - возможен разрыв барабанных перепонок и лёгких,
больше 200 - смерть

Громкость звука - уровень шума.

Единица измерения шума

Уровни шума измеряются в единицах, выражающих степень звукового давления. Они связаны с именами двух известных ученых - А.Г. Белла, изобретателя телефона, и Генриха Герца, немецкого физика. В белах или чаще, в децибелах измеряется относительная громкость звука. Децибел - это десятикратный логарифм отношения интенсивности звуковой энергии к ее значению. Также звук измеряют и в Герцах. Гц - это единица СИ частоты, равная частоте периодического процесса, при котором за время 1 секунду совершается один цикл периодического процесса (например, 1 колебание). Но кто определяет, когда шум вреден, а когда - нет? - Сам человек, поскольку ухо человека является «самым точным измерительным прибором».

Дело в том, что человеческое ухо обладает чрезвычайно большим диапазоном чувствительности - от 20 дБ до 120 дБ, что соответствует энергии в 10 раз.

Виды шумов

Шумы бывают: производственные и непроизводственные.

Также есть и благоприятные шумы:

Шум прибоя

Журчание родника

Шелест листвы

Эти звуки всегда приятны человеку. Они его успокаивают, снимают стрессы.

Экологическое нормирование параметрического загрязнения

Понятие экологического нормирования

Экологическое нормирование - нормирование антропогенного воздействия на экосистему в пределах ее экологической емкости, не приводящего к нарушению механизмов саморегуляции. Основными критериями экологического нормирования являются: сохранение биотического баланса, стабильности и разнообразия экосистемы.

В природоохранной практике России, как и во всем мире, экологическое нормирование используется в качестве одной из основных мер или инструментов охраны окружающей среды.

Разработка и принятие экологических нормативов представляет собой одно из направлений природоохранной деятельности уполномоченных государственных органов.

Развитие экологического нормирования призвано обеспечить создание системы реальных, отражающих фундаментальные природные процессы и возможности современных технологий, ориентиров минимизации антропогенного воздействия.

Нормируемые параметры и предельно допустимые уровни шума на рабочих местах

Характеристикой постоянного шума на рабочих местах являются уровни звукового давления в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, определяемые по формуле:

L = 201gР/Р0, где

Р - среднеквадратичная величина звукового давления, Па;

Ро - исходное значение звукового давления в воздухе равное 2-10°Па.

Допускается в качестве характеристики постоянного широкополосного шума на рабочих местах принимать уровень звука в дБА, измеренный на временной характеристике «медленно» шумомера, определяемый по формуле:

LA = 201g РА / Р0,

где РА - среднеквадратичная величина звукового давления с учетом коррекции «А» шумомера, Па.

Характеристикой непостоянного шума на рабочих местах является эквивалентный (по энергии) уровень звука в дБА.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл.

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с Руководством 2.2.013-94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести, напряженности трудового процесса».

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности в дБА

Примечания:

* для тонального и импульсного шума ПДУ на 5 дБА меньше значений, указанных в табл. 1;

* для шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления - на 5 дБА меньше фактических уровней шума в помещениях (измеренных или рассчитанных), если последние не превышают значений табл. 1 (поправка для тонального и импульсного шума при этом не учитывается), в противном случае - на 5 дБА меньше значений, указанных в табл. 1;

* дополнительно для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума -125 дБА1.

Предельно допустимые уровни звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест, разработанные с учетом категорий тяжести и напряженности труда, представлены в табл. 2.

Допустимые уровни звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука

Глава из книги английского инженера Руперта Тейлора «Шум», R. Taylor «Noise»

В наше время все уже что-то слышали о «децибелах», но почти никто не знает, что это такое. Децибел представляется чем-то вроде акустического эквивалента «свечи» – единицы силы света – и кажется связанным со звоном колокольчиков (bell – в переводе с английского означает колокол, колокольчик). Однако это совсем не так: свое название децибел получил в честь Александера Грейама Белла – изобретателя телефона.

Децибел не только не единица измерения звука, он вообще не является единицей измерения, во всяком случае в том смысле, как, например, вольты, метры, граммы и т. д. Если угодно, в децибелах можно измерить даже длину волос, чего никак нельзя сделать в вольтах. По-видимому, все это звучит несколько странно, так что попытаемся дать разъяснение. Вероятно, никто не удивится, если я скажу, что расстояние от Лондона до Инвернесса в двадцать раз больше, чем от моего дома до Лондона. Я могу выразить любое расстояние, сравнивая его с расстоянием от моего дома до Лондона, скажем до площади Пикадилли Расстояние от Лондона до Джон-о"Тротса в двадцать шесть раз больше, чем это последнее расстояние, а до Австралии – в 500 раз. Но это не означает, что Австралия удалена от чего бы то ни было на 500 единиц. Все приведенные числа выражают только отношения величин.

Одна из измеримых характеристик звука – это количество заключенной в нем энергии; интенсивность звука в любой точке можно измерить как поток энергии, приходящейся на единичную площадку, и выразить, например, в ваттах на квадратный метр (Вт/м 2). При попытке записать в этих единицах интенсивность обычных шумов сразу же возникают трудности, так как интенсивность наиболее тихого звука, доступного восприятию человека с самым острым слухом, равна приблизительно 0,000 000 000 001 Вт/м 2 . Один из наиболее громких звуков, с которым мы сталкиваемся уже не без риска вредных последствий, – это шум реактивного самолета, пролетающего на расстоянии порядка 50 м. Его интенсивность составляет около 10 Вт/м 2 . А на расстоянии 100 м от места запуска ракеты «Сатурн» интенсивность звука заметно превышает 1000 Вт/м 2 . Очевидно, что оперировать числами, выражающими интенсивности звука, лежащие в столь широком диапазоне, очень трудно, независимо от того, представляем ли мы их в единицах энергии или даже в виде отношений. Существует простой, хотя и не вполне очевидный выход из данного затруднения. Интенсивность самого слабого слышимого звука равна 0,000 000 000 001 Вт/м 2 . Математики предпочтут записать это число таким образом: 10 -12 Вт/м2. Если кому-либо такая запись непривычна, напомним, что 10 2 это 10 в квадрате, или 100, а 10 3 это 10 в кубе, или 1000. Аналогично 10 -2 означает 1/10 2 , или 1/100, или 0,01, а 10 -3 это 1/10 3 , или 0,001. Умножить любое число на 10 x – значит х раз умножить его на 10.

Пытаясь найти наиболее удобный способ выражения интенсивностей звука, попробуем представить их в виде отношений, приняв за эталонную интенсивность величину 10 -12 Вт/м2. При этом будем отмечать, сколько раз нужно умножить эталонную интенсивность на 10 для того, чтобы получить заданную интенсивность звука. Например, шум реактивного самолета в 10 000 000 000 000 (или в 10 13) раз превышает наш эталон, то есть этот эталон необходимо 13 раз умножить на 10. Такой способ выражения позволяет значительно уменьшить значения чисел, выражающих гигантский диапазон звуковых интенсивностей; если мы обозначим однократное увеличение в 10 раз как 1 бел, то получим «единицу» для выражения отношений. Так, уровень шума реактивного самолета соответствует 13 белам. Бел оказывается слишком большой величиной; удобнее пользоваться более мелкими единицами, десятыми долями бела, которые и называют децибелами. Таким образом, интенсивность шума реактивного двигателя равна 130 децибелам (130 дБ), но во избежание путаницы с каким-либо другим эталоном интенсивности звука следует указать, что 130 дБ определяется относительно эталонного уровня 10 -12 Вт/м 2 .

Если отношение интенсивности данного звука к эталонной интенсивности выражается каким-нибудь менее круглым числом, например 8300, перевод в децибелы окажется не таким простым. Очевидно, число умножений на 10 будет больше 3 и меньше 4, но для точного определения этого числа необходимы длительные вычисления. Как обойти такое затруднение? Оказывается, весьма просто, поскольку все отношения, выраженные в единицах «десятикратных увеличений», давно вычислены – это логарифмы.

Любое число можно представить как 10 в какой-то степени: 100 это 10 2 и, следовательно, 2 – это логарифм 100 при основании 10; 3 – логарифм 1000 при основании 10 и, что менее очевидно, 3,9191 – логарифм 8300. Нет необходимости все время повторять «при основании 10», потому что 10 – самое распространенное основание логарифма, и если нет другого указания, то подразумевается именно это основание. В формулах эта величина записывается как log10 или lg.

Пользуясь определением децибела, можем теперь записать уровень интенсивности звука в виде:

Например, при интенсивности звука в 0,26 (2,6×10 -1) Вт/м 2 уровень интенсивности в дБ относительно эталона 10 -12 Вт/м 2 равен

Но логарифм 2,6 равен 0,415; следовательно, окончательный ответ выглядит так:

10 × 11,415 = 114 дБ (с точностью до 1 дБ)

Не следует забывать, что децибелы не являются единицами измерения в том смысле слова, как, например, вольты или омы, и что соответственно с ними приходится обращаться иначе. Если две аккумуляторные батареи по 6 В (вольт) соединить последовательно, то разность потенциалов на концах цепи составит 12 В. А что получится, если к шуму в 80 дБ добавить еще шум в 80 дБ? Шум общей интенсивностью в 160 дБ? Никак нет – ведь при удвоении числа его логарифм возрастает на 0,3 (с точностью до двух десятичных знаков). Тогда при удвоении интенсивности звука уровень интенсивности увеличивается на 0,3 бела, то есть на 3 дБ. Это справедливо для любого уровня интенсивности: удвоение интенсивности звука приводит к увеличению уровня интенсивности на 3 дБ. В табл. 1 показано, как увеличивается уровень интенсивности, выраженный в децибелах, при сложении звуков различной интенсивности.

Таблица № 1

Теперь, разрешив тайну децибела, приведем несколько примеров.

Уровень шума в децибелах

В табл. 2 дан перечень типичных шумов и уровни их интенсивности в децибелах.

Таблица № 2

Интенсивность типичных шумов
Примерный уровень звукового давления, дБА Источник звука и расстояние до него
160 Выстрел из ружья калибра 0,303 вблизи уха
150 Взлет лунной ракеты, 100 м
140 Взлет реактивного самолета, 25 м
120 Машинное отделение подводной лодки
100 Очень шумный завод
90 Тяжелый дизельный грузовик,7 м;
Дорожный перфоратор (незаглушенный),7 м
80 Звон будильника, 1 м
75 В железнодорожном вагоне
70 В салоне небольшого автомобиля, движущегося со скоростью 50 км/ч;
Квартирный пылесос, 3 м
65 Машинописное бюро;
Обычный разговор, 1 м
40 Учреждение, где нет специальныхисточников шума
35 Комната в тихой квартире
25 Сельская местность, расположенная вдали от дорог

Каким образом можно определить интенсивность данного звука? Это довольно сложная задача; значительно легче измерить колебания давления в звуковых волнах. В табл. 3 приведены значения звукового давления для звуков различной интенсивности. Из этой таблицы видно, что диапазон звуковых давлений не так широк, как диапазон интенсивностей: давление возрастает вдвое медленнее, чем интенсивность. При удвоении звукового давления энергия звуковой волны должна увеличиться в четыре раза – тогда соответственно увеличится скорость частиц среды. Поэтому, если мы измерим звуковое давление, как и интенсивность, в логарифмическом масштабе и, кроме того, введем множитель 2, получим те же величины для уровня интенсивности. Например, звуковое давление самого слабого из слышимых звуков равно примерно 0,00002 Н (ньютона)/м 2 , а в кабине дизельного грузовика оно составляет 2 Н/м 2 , следовательно, уровень интенсивности шумов в кабине равен

Таблица № 3

Выражая уровень звукового давления в децибелах, следует помнить, что при увеличении давления вдвое прибавляется 6 дБ. Если в кабине дизельного грузовика шум достигнет 106 дБ, то звуковое давление удвоится и составит 4 Н/м 2 , а интенсивность увеличится в четыре раза и достигнет 0,04 Вт/м 2 .

Мы много говорили о мере интенсивности звука, но совершенно не касались практических методов измерения этой величины. К доступным для измерения характеристикам звуковой волны относятся интенсивность, давление, скорость и смещение частиц. Все эти характеристики непосредственно связаны друг с другом, и, если удается измерить хотя бы одну из них, остальные можно вычислить.

Нетрудно увидеть или почувствовать на ощупь колебание легких предметов, оказавшихся на пути звуковой волны. На этом явлении основан принцип действия осциллографа – самого старого вида шумомера. Осциллограф состоит из диафрагмы, к центру которой прикреплена тонкая нить, механической системы для усиления колебаний, и пера, записывающего на бумажной ленте смещения диафрагмы. Такие записи напоминают «волнистые линии», о которых мы говорили в предыдущей главе.

Этот прибор был крайне малочувствителен и годился только для подтверждения акустических теорий ученых того времени. Инерция механических деталей предельно ограничивала частотную характеристику и точность прибора. Замена механического усилителя оптической системой и использование фотографического метода регистрации сигналов позволили значительно снизить инерционность прибора. В усовершенствованном таким образом устройстве нить диафрагмы наматывалась на вращающийся барабан, закрепленный на оси, к которой прикреплялось зеркальце, вращающееся вместе с барабаном. На зеркальце падал луч света; при поворотах зеркальца то в одну, то в другую сторону, происходивших в результате колебаний мембраны, луч отклонялся, и эти отклонения можно было записывать на светочувствительную бумагу. И только с развитием электроники были разработаны более или менее точные измерительные приборы, а для конструирования современного портативного шумомера пришлось дожидаться изобретения транзисторов.

По существу, современный шумомер – это электронный аналог старого механического устройства. Первым шагом в процессе измерения служит преобразование звукового давления в изменения электрического напряжения; это преобразование производит микрофон. В настоящее время в таких приборах применяют микрофоны самых различных типов: конденсаторные, с движущейся катушкой, кристаллические, ленточные, с нагретой проволокой, с сегнетовой солью – это лишь малая часть всех типов микрофонов. В нашей книге мы не будем рассматривать принципы их действия.

Все микрофоны выполняют одну и ту же основную функцию, и большинство из них снабжено мембраной, того или иного вида, которая приводится в колебания изменениями давления в звуковой волне. Смещения мембраны вызывают соответствующие изменения напряжения на зажимах микрофона. Следующий шаг в измерении – усиление, а затем выпрямление переменного тока и заключительная операция – подача сигнала на вольтметр, откалиброванный в децибелах. В большинстве таких приборов вольтметром измеряются не максимальные, а «среднеквадратичные значения» сигнала, то есть результат определенного вида усреднения, которым пользуются чаще, чем максимальными значениями.

Обычным вольтметром нельзя охватить огромный диапазон звуковых давлений и поэтому в той части устройства, где происходит усиление сигнала, имеется несколько цепей, различающихся по усилению на 10 дБ, которые можно включать последовательно одну за другой. Однако до сих пор еще широко применяют усовершенствованную модель старого осциллографа. В электронно-лучевом осциллоскопе проблема инерционности, свойственная механическому осциллографу, полностью исключена, так как масса электронного луча пренебрежимо мала, и он легко отклоняется электромагнитным полем и рисует на экране кривую колебаний напряжения, подаваемого на прибор.

Полученная осциллографическая запись применяется для математического анализа формы звуковой волны. Осциллоскопы также чрезвычайно полезны и при измерении импульсных шумов. Как мы уже говорили, обычный шумомер непрерывно определяет среднеквадратичные значения сигнала. Но, например, звуковой хлопок или орудийный выстрел не порождают непрерывный шум, а создают единичный, очень мощный, иногда опасный для слуха импульс давления, который сопровождается постепенно затухающими колебаниями давления (рис. 13). Начальный скачок давления может повредить слух или разбить оконное стекло, но так как он единичен и кратковременен, то среднеквадратичная величина не будет для него характерна и может только привести к недоразумению. Хотя для измерения импульсных звуков существуют специальные шумомеры, большая часть их не сможет зарегистрировать полностью среднеквадратичную величину импульса просто потому, что они не успевают сработать. Вот здесь осциллоскоп и демонстрирует свои преимущества, мгновенно вычерчивая точную кривую подъема давления, так что максимальное давление в импульсе можно измерить прямо на экране.

Рис. 13. Типичный импульсный шум

Возможно, одним из наиболее существенных вопросов акустики является зависимость поведения звука от его частоты. Нижняя частотная граница восприятия звука человеком составляет около 30 Гц, а верхняя – не выше 18 кГц; поэтому шумомер должен был бы регистрировать звуки в том же диапазоне частот. Но тут возникает серьезное затруднение. Как мы увидим в следующей главе, чувствительность человеческого уха для различных частот далеко не одинакова; так, например, чтобы звуки с частотой 30 Гц и 1 кГц звучали одинаково громко, уровень звукового давления первого из них должен быть на 40 дБ выше, чем второго. И следовательно, показания шумомера сами по себе еще не многого стоят.

Этой проблемой занялись специалисты по электронике, и современные шумомеры снабжены корректирующими контурами, состоящими из отдельных цепочек, подключая которые можно снизить чувствительность шумомера к низкочастотным и очень высокочастотным звукам и тем самым приблизить частотные характеристики прибора к свойствам человеческого уха. Обычно шумомер содержит три корректирующих контура, обозначаемых А, В и С; наиболее полезна коррекция А; коррекцию В применяют лишь изредка; коррекция С мало влияет на чувствительность в диапазоне 31,5 Гц - 8 кГц. В некоторых типах шумомеров используется еще коррекция D, которая позволяет считывать показания прибора прямо в единицах PN дБ, применяемых для измерения шума самолетов. Точный расчет PN дБ весьма сложен, но для высоких уровней шума уровень в единицах PN дБ равен уровню в дБ, измеренному шумомером с коррекцией D, плюс 7 дБ; в большинстве случаев шум реактивных самолетов, выраженный в PN дБ, приблизительно равен уровню в дБ, измеренному шумомером с коррекцией А, плюс 13 дБ.

В настоящее время почти повсеместно уровень шума принимают равным уровню, измеренному в дБ при помощи шумомера с коррекцией А, и выражают его в единицах дБА. Хотя человеческое ухо воспринимает звук несравненно более утонченно, чем шумомер, и поэтому звуковые уровни, выраженные в дБА, ни в коей мере не соответствуют точно физиологической реакции, но простота этой единицы делает ее чрезвычайно удобной для практического применения.

Важнейший недостаток измерения громкости в дБА состоит в том, что при этом наша реакция на звуки низкой частоты недооценивается и совершенно не учитывается повышенная чувствительность уха к громкости чистых тонов.

К числу достоинств шкалы дБА следует, в частности, отнести то обстоятельство, что здесь, как мы увидим в следующей главе, удвоение громкости грубо соответствует увеличению уровня шума на 10 дБА. Однако даже эта шкала дает не более чем грубое указание на роль частотного состава шума, а так как эта характеристика шума часто чрезвычайно важна, то результаты измерений, проведенных с помощью шумомера, приходится дополнять данными, полученными при использовании других приборов.

Частоты, как и интенсивности, измеряют в логарифмическом масштабе, причем за основу принимают ступени удвоения числа колебаний в секунду. Так как, однако, диапазон частот менее широк, чем диапазон интенсивностей, число десятикратных увеличений не подсчитывают, десятичными логарифмами не пользуются и частоты звука всегда выражают числом колебаний, или циклов в секунду. За единицу частоты принимают одно колебание в секунду, или 1 герц (Гц). Определение интенсивности звука для каждой частоты потребовало бы бесконечного числа измерений. Поэтому, как и в музыкальной практике, весь диапазон разделяют на- октавы. Самая большая частота в каждой октаве в два раза превышает самую малую. Первый, наиболее простой этап частотного анализа звука - измерение уровня звукового давления в пределах каждой из 8 или 11 октав, в зависимости от интересующего нас диапазона частот; при измерении сигнал с выхода шумомера поступает на набор октавных фильтров, или на октавный полосовой анализатор. Слово «полоса» указывает на тот или иной участок частотного спектра. Анализатор содержит 8 или 11 электронных фильтров. Эти устройства пропускают только те частотные компоненты сигнала, которые лежат в пределах их полосы. Включая фильтры по одному, можно последовательно измерить уровень звукового давления в каждой полосе непосредственно при помощи шумомера. Но во многих случаях даже октавные анализаторы не дают достаточных сведений о сигнале, и тогда прибегают к более детальному анализу, применяя фильтры в половину или в одну треть октавы. Для получения еще более детального анализа используют узкополосные анализаторы, которые «разрезают» шум на полосы постоянной относительной ширины, например 6 % от средней частоты полосы или на полосы шириной в определенное число герц, например 10 или 6 Гц. Если в шумовом спектре присутствуют чистые тоны, что случается нередко, их частоту и амплитуду можно установить точно с помощью анализатора дискретных частот.

Обычно звукоанализирующая аппаратура очень громоздка, и поэтому ее применение ограничивается рамками лабораторий. Весьма часто звук, подлежащий исследованию, через микрофон и усилительные цепи шумомера записывают на высококачественный портативный магнитофон, применяя для калибровки контрольные сигналы; затем запись проигрывают уже в лаборатории, подавая сигнал на анализатор, который автоматически вычерчивает частотный спектр на бумажной ленте. На рис. 14 изображены спектры типичного шума, полученные с помощью октавного, третьоктавного и узкополосного (полоса 6 Гц) анализаторов.


Рис. 14. Анализ звука с помощью октавного и третьоктавного фильтров и фильтра с шириной полосы 6 Гц.

Однако, чтобы измерить шум, еще недостаточно знать уровень громкости и частоту звука. Если говорить о шуме окружающей среды, то он складывается из множества отдельных шумов различного происхождения: это шумы уличного движения, самолетов, промышленные шумы, а также шумы, возникающие в результате других видов деятельности человека. Если попытаться измерить уровень шума на улице обычным шумомером, то окажется, что это чрезвычайно сложная задача: стрелка шумомера будет непрерывно колебаться в очень широких пределах. Что же следует принять за уровень шума? Максимальный отсчет? Нет, эта цифра слишком высока и непоказательна. Средний уровень? Это было бы возможно, но крайне трудно оценить среднюю величину для какого-то определенного промежутка времени, а чтобы удерживать стрелку в пределах шкалы, придется непрерывно менять ступени усиления шумомера.

Таблица № 4

Существуют два общепринятых метода учета флуктуации уровня шума, позволяющие выражать этот уровень в численной мере. В первом методе используют так называемый анализатор статистического распределения. Это устройство регистрирует относительную долю времени, в течение которого измеряемый уровень шума находится в пределах каждой из ступеней шкалы, расположенных, например, через каждые 5 дБ. Результаты таких измерений показывают, в течение какой доли полного времени был превышен каждый из звуковых уровней. Нанеся на график числа, представленные в табл. 4, соединив точки плавной линией и установив уровни, которые были превышены в течение 1, 10, 50, 90 и 99 % времени, мы сможем дать удовлетворительное описание «шумового климата». Указанные уровни обозначаются так: L1, L10, L50, L90 и L99. L1 дает представление о максимальном значении уровня шума, L10 – это характерный высокий уровень, тогда как L90 как бы показывает шумовой фон, то есть уровень, до которого снижается шум при наступлении временного затишья. Большой интерес представляет разность между значениями L10 и L90; она указывает, в каких пределах в каждом данном месте варьируется уровень шума, а чем больше колебания шума, тем сильнее его раздражающее воздействие. Впрочем, уровень L10 и сам по себе служит хорошим показателем беспокоящего действия транспортного шума; этот показатель широко применяется при измерении и прогнозирования транспортного шума, и с его учетом определяют размеры государственной компенсации жертвам шума новых автострад и дорог (см. гл. 11). Итак, L10 – это уровень звука, выраженный в дБА, который превышается в течение точно десяти процентов от полного времени измерений.

Обычно транспортный шум флуктуирует вполне определенным образом, поэтому уровень L10 служит самостоятельным достаточно удовлетворительным показателем шума, хотя только частично представляет статистическую картину шума. Если же шумы меняются беспорядочно, как, например, это происходит при наложении друг на друга железнодорожных, промышленных и иногда самолетных шумов, распределение шумовых уровней сильно колеблется от точки к точке. В подобных случаях также желательно выразить все статистические данные одним числом. Были сделаны попытки изобрести формулу, включающую всю картину шума, включая и размах шумовых флуктуации. К таким показателям относятся «индекс транспортного шума» и «уровень шумового загрязнения», но самый распространенный показатель – это особого рода средняя величина, обозначаемая Lэкв. Она характеризует среднее значение энергии звука (в отличие от арифметического усреднения уровней, выраженных в дБ); иногда Lэкв называют эквивалентным уровнем непрерывного шума, потому что численно эта величина соответствует уровню такого строго стабильного шума, при котором за весь период измерения микрофон принял бы то же суммарное количество энергии, какое поступает в него при всех неравномерностях, всплесках и выбросах измеряемого флуктуирующего шума. В простейшем случае Lэкв составит, например 90 дБА, если уровень шума все время равнялся 90 дБА, или если половину времени измерения шум составлял 93 дБА, а остальное время полностью отсутствовал. Действительно, так как удвоение интенсивности или энергии шума приводит к увеличению его уровня на 3 дБ, то для того, чтобы при удвоении интенсивности шума сохранить постоянным общее количество энергии, следует вдвое уменьшить время его действия. Аналогично ту же величину Lэкв = 90 дБА мы получим при уровне шума 100 дБА, если он действует в течение одной десятой того же промежутка времени. Измерение расхода электроэнергии при помощи электросчетчика производится подобным же образом. На практике периоды постоянного уровня шума и периоды полного его отсутствия встречаются не часто, и поэтому рассчитать Lэкв достаточно сложно. Здесь на помощь приходят таблицы распределения типа табл. 4, или специально сконструированные автоматические счетчики. Индекс Lэкв обладает двумя недостатками: при усреднении короткие всплески шума с высоким уровнем вносят больший вклад, чем периоды шума низкого уровня; кроме того, увеличение числа максимумов мало влияет на величину Lэкв. Например, если при усреднении за день шума от 100 поездов получается эквивалентный уровень Lэкв = 65 дБА, то при увеличении числа поездов вдвое Lэкв возрастает всего на 3 дБА. Для того чтобы величина Lэкв возросла так же, как при удвоении громкости (то есть как при увеличении уровня на 10 дБА) шума, создаваемого каждым из поездов, их число пришлось бы увеличить в 10 раз. И все же, несмотря на некоторую неполноценность, шкала Lэкв представляет собой наилучшую универсальную меру шума из всех имеющихся в настоящее время. В Англии она постепенно получит такое же распространение, какое имеет на континенте. Сейчас она уже применяется в Англии для измерения дозы шума, получаемой лицами, работающими в промышленности по найму.

Применяется и другая мера, по существу гораздо более сходная с Lэкв, чем может показаться на первый взгляд: это нормировочный индекс шума, к сожалению слишком хорошо знакомый тем, кто живет вблизи крупных аэропортов. Шкалу нормировочных индексов шума используют для характеристики среднемаксимальных уровней шума самолетов, выраженных в PN дБ (так называемый «воспринимаемый уровень звука», см. Акуст. словарь), а так как она начинается от уровня 80 PN дБ (около 67 дБА), то значение 80 вычитается из величины среднемаксимального уровня. Теоретически, если за время измерения шум производит только один самолет, величина этого индекса будет точно равняться среднемаксимальному уровню в PN дБ минус 80. При каждом удвоении числа самолетов следует прибавлять к этому числу 4,5 единицы, а не 3, как для шкалы Lэкв. Хотя формула этого индекса и выглядит несколько ошеломляюще, выше нам удалось фактически полностью его охарактеризовать. Если отдельные пиковые уровни шума самолетов различаются всего на несколько дБ, усредненную величину можно вычислить арифметически. В противном случае значения уровня шума, выраженные в дБ, придется обратно переводить в величины интенсивности, и здесь потребуются таблица логарифмов и светлая голова!

Существует множество других мер, шкал и индексов для измерения шума, включая фоны, соны, нои, различные производные PN дБ и ряд других критериев, не считая всех международных вариантов шкалы нормировочных индексов шума. Заниматься описанием других единиц и показателей нет необходимости. Следует отметить, что в США для измерения шума на рабочем месте принят показатель Lэкв, но при удвоении времени воздействия шума к его значению там прибавляют не 3 дБ, как в Европе, а 5 дБ. В остальном показатели дБА, L10 и Lэкв применяются одинаково во всем мире.

Прежде, чем перейти к результатам измерения шумовых характеристик кулеров фирмы Titan, остановимся поподробнее на задачах и методике этих исследований.

Актуальность

По мере увеличения производительности процессоров компьютеров, в том числе за счет увеличения количества активных элементов в чипе и увеличения рабочей частоты, растет и количество выделяемого процессором тепла. Это, в свою очередь, приводит к необходимости интенсификации охлаждения, что до недавнего времени, применительно к бытовым персональным компьютерам, достигалось за счет увеличения эффективной площади радиаторов и увеличения скорости вентилятора, обдувающего радиатор. Последнее приводит к существенному росту излучаемого шума. И вот уже во многих офисах с большим сосредоточением компьютеров шумность в помещении определяется не остатками шума, проникающего с улицы через герметичные пластиковые окна, а собственно самими компьютерами. А ведь шум один из важных факторов определяющих работоспособность человека! Возникает подсознательное желание убрать системный блок куда подальше.

Желая изменить ситуацию и находясь в условиях жесткой конкуренции, производители систем охлаждения начали внедрение в бытовые персональные компьютеры технологий, хорошо зарекомендовавших себя в профессиональной электронной аппаратуре различного применения. На рынке появились системы охлаждения, основанные на применении технологии теплоотводящих трубок и системы водяного охлаждения. Сравнительный анализ трех систем производства фирмы Titan Computer GmbH с точки зрения эффективности теплоотвода приведен в статье "Обзор кулеров фирмы Titan ". Были протестированы: Siberia – представитель традиционной системы охлаждения, Vanessa S и L-type система охлаждения на основе теплоотводящих трубок и водяной системы TWC-A04. Вопросы измерения шумовых характеристик вышеперечисленных систем будут рассмотрены в статье "Измерение шумовых характеристик систем охлаждения фирмы Titan".

Характеристики шума. Физическое и психологическое восприятие шума человеком.

В паспортных данных систем охлаждения или вентиляторов чаще всего приводится интегральная оценка уровня шума, измеренная в дБА, реже в дБ (читается, децибел). Это логарифмическая величина, определяющая уровень шума относительно порога слышимости звука человеком. Различие между дБ и дБА состоит в том, что в последнем случае равномерная характеристика чувствительности по частоте (например, как у идеального микрофона) корректируется с учетом слухового восприятия человека. При уровнях шума, излучаемых компьютерами, слуховое восприятие имеет повышенный порог чувствительности на нижних и верхних частотах с максимумом в пределах от 400 Гц до 4 кГц.

Шумность системы охлаждения существенно зависит от скорости вращения вентилятора и конструкции радиатора. Поэтому, если она комплектуется регулятором скорости вращения, то в спецификации указываются минимальный и максимальный уровень шума. Например, для системы охлаждения Siberia фирмы Titan Computer GmbH этот уровень при минимальной скорости вращения составляет менее 27 дБА, а при максимальной может достигать 45 дБА.

Уровень шума исправного современного компьютера находится в пределах от 35 до 50 дБА. Если в компьютере установлен плохо сбалансированный вентилятор, то он, особенно на первых минутах после включения, может достигать 55 дБА и более.

Человек, по понятным причинам, наиболее раздражительно относится к шуму в ночное время. С точки зрения санитарных норм для комфортного жилья, рекомендуемый уровень от оборудования систем вентиляции в это время, не должен превышать 25-35 дБА. Так, шум системы охлаждения Siberia при максимальной производительности на 10 дБА превышает санитарную норму. А превышение уровня звука на 10 дБА субъективно оценивается человеком, как увеличение громкости более чем в 2 раза! Таким образом, использование обычного компьютера ночью вряд ли можно назвать комфортным.

Если в помещении находится несколько компьютеров, то общий уровень шума нельзя получить путем алгебраического сложения от каждого. Например, если в помещении находится два компьютера, излучающие по 45 дБА каждый, то уровень шума составит 48 дБА, четыре компьютера обеспечат уровень шума 51 дБА и так далее.

Интегральная оценка уровня шума (в дБА или дБ) ничего не говорит о его спектральном распределении. Спектр шума обычно измеряют в спектральных полосах с центральными частотами 63 Гц; 125 Гц; 250 Гц; 500 Гц;1 кГц; 2 кГц; 4 кГц; 8 кГц. Также очень полезны измерения текущего спектра без усреднения по полосам, позволяющие выделить частотные составляющие, определяемые отдельно вращением вентилятора и составляющие, излучаемые при обтекании радиатора воздушным потоком. Анализ спектра шума позволяет оценить фактор его психологического влияния на человека. Зная его для системы охлаждения, можно прогнозировать и общий шум системного блока компьютера. Кроме того, анализ спектра необходим при выборе методов и материалов для пассивного и/или активного снижения шума.

Стандарты. Оборудование.

Вентиляторы систем охлаждения производства КНР сертифицируются по стандарту CNS 8T 53, который очень близок к стандарту DIN 45635. Сертификационные измерения проводятся в заглушенной, безэховой камере (в условиях свободного поля). Уровень собственного шума в камере и собственные шумы измерительного оборудования не должны превышать 15 дБА.

Этим требованиям соответствует большая звукомерная заглушенная камера ФГУП «Акустический институт имени академика Н.Н. Андреева» . Звукомерная заглушенная камера (ЗЗК) предназначена для проведения акустических измерений в условиях свободного звукового поля. Здание камеры установлено на отдельном «плавающем» фундаменте для снижения уровней вибраций и низкочастотных шумовых помех; камера имеет двойные стены с воздушным зазором между ними.

Внутренние стены помещения ЗЗК облицованы поглощающим покрытием, изготовленным из клиновидных плит, состоящих из проклеенного негорючими смолами штапельного стекловолокна с удельным весом 150 кг/м 3 и длиной клиньев 1,5 м. Помещение ЗЗК имеет форму параллелепипеда, размеры которого составляют 11,7 х 8,7 х 11,0(h) м. При этом полезный объем составляет 1120 м 3 . Рабочий пол ЗЗК – это сетка из стального троса, расположенная на высоте 4 м от звукозаглушающего покрытия пола. Камера вместе с комплексом измерительной аппаратуры представляет собой измерительный стенд и проходит обязательную периодическую аттестацию органов по стандартизации.

В частности, проводится аттестация по определению отклонения поля звукового давления звукомерной заглушенной камеры от свободного поля. Оно должно соответствовать требованиям ГОСТ 12.1.024-81 «Шум. Определение шумовых характеристик источников шума в заглушенной камере. Точный метод». При этом измерения уровней звука проводятся в третьоктавных полосах со среднегеометрическими частотами от 63 до 20000 Гц. Отклонения поля от свободного при этом не превышают ±1,5 дБ на краях частотного диапазона на расстояниях 4 м.

Методика измерения.

Система охлаждения размещается на рабочем столе в центре камеры и работает в стандартном положении без дополнительного препятствия для потока воздуха.

Уровень звукового давления измеряется с помощью прецизионного шумомера 2203 фирмы Брюль и Къер, установленного на расстоянии 1м от испытуемого объекта. Он укомплектован однодюймовым конденсаторным микрофоном 4145 и октавными фильтрами 1613. На фотографии 1 иллюстрируется измерение шумов системы охлаждения Vanessa S-type.


Большая звукомерная заглушенная камера ФГУП «Акустический институт имени академика Н.Н. Андреева». Измерение шумов Vanessa S-type.

Измерения шума производятся в октавных полосах с центральными частотами от 63 Гц до 8000 Гц и в дБА.

Если вентилятор снабжен регулятором скорости вращения, то измерения проводятся для трех режимов скорости вращения: High, Middle, Low.

В качестве примера, приведем результаты измерения шумовых характеристик кулера IH-3200С производства ICEHUMMER Corp. (). Его производительность достигает 90 м 3 /час при скорости вращения вентилятора 3000 оборотов/мин. С результатами тепловых измерений можно ознакомиться в статье Кулеры ICE HAMMER IH-3400WFCA и IH-3200C .

К сожалению, в конструкции кулера не предусмотрен регулятор скорости вращения вентилятора. Поэтому нами был использован регулятор скорости от Vanessa S-type. Распределение уровня звукового давления в октавных полосах в зависимости от положения регулятора скорости вращения представлено на рис.1.

Рис.1. Распределение уровня звукового давления системы охлаждения IH-3200С в октавных полосах частотах.

Максимум спектра шума вентилятора сосредоточен в полосе частот от 500 Гц до 4000Гц. Это не очень хорошо с точки зрения восприятия шума человеком, поскольку максимум в спектре попадает в область наибольшей чувствительности слуха 1000-2500 Гц. Если сравнивать IH-3200C и систему охлаждения фирмы Titan Computer GmbH Vanessa S-type, обладающую большей производительностью, то шум от продукта Titan будет восприниматься человеком менее раздражающее, благодаря тому, что его максимум спектра сдвинут в область более низких частот. Более подробно о шумовых характеристиках систем охлаждения фирмы Titan можно будет в ближайшее время узнать в статье "Измерение шумовых характеристик систем охлаждения фирмы Titan".

В таблице приведены результаты измерений уровня шума IH-3200С в дБА, при трех положениях регулятора скорости.

Таблица. Относительный уровень шума L, излучаемый IH-3200С .

Результаты измерений показали, что значение уровня шума измеренного образа совпадает со значением, заявленным производителем.



Понравилась статья? Поделиться с друзьями: