Цифровая обработка сигналов. Медианная фильтрация

Введение

Медианный фильтр - один из видов цифровых фильтров, широко используемый в цифровой обработке сигналов и изображений для уменьшения уровня шума.

Реализуется с помощью окна, состоящего из нечётного количества отсчётов. Значения отсчётов внутри окна сортируются по порядку; и среднее значение, то есть значение находящееся в середине упорядоченного списка, принимается выходным значением. На следующем шаге окно передвигается на один отсчёт вперёд и вычисления повторяются. Крайние значения массива мыслим продублированными столько раз, чтобы можно было применить окно к первому и к последнему значению.

Медианная фильтрация - обычная процедура обработки изображений. Она особенно часто используется для уменьшения шума в изображении.

Постановка задачи

Дана матрица NxN. Необходимо реализовать параллельный алгоритм медианной фильтрации этой матрицы.

Метод решения

(Примечание: для простоты был реализован фильтр 3x3)

Последовательный алгоритм:

Фильтрация проводится построчно – для первого элемента строки заполняется массив окрестности (с учетом того, что искусственно добавляются три значения-соседи слева), этот массив сортируется быстрой сортировкой, затем среднее значение записывается в выходную матрицу. Для каждого следующего элемента строки массив окрестности не заполняется заново – в него лишь добавляются новые три элемента, замещая старые три. Для того, чтобы это было возможно сделать за один проход (по массиву окрестности и новым трем элементам) введен специальный массив с «количеством жизней» элемента. Жизней может быть 1, 2 и 3. Добавляемые 3 элемента предварительно сортируются и добавление производится слиянием: во время него элементы с 1й жизнью затираются, элементы, имевшие 2 и 3 жизни получают 1 и 2 соответственно, а добавляемые элементы становятся обладателями 3х жизней. Средний элемент записывается в выходной массив. Обработка последнего элемента производится повторением итерации предпоследнего шага. На практике данный метод по сравнению с полной выборкой окрестности и ее сортировкой показывает превосходство по скорости в 3 раза.

Параллельный алгоритм:

(Примечание: размерность матрицы была ограничена значениями кратными двойке)

Т.к. в данной задаче наблюдается независимость по данным, параллелизм производится на основе деления матрицы на части (по несколько строк, а именно N/p, где p –количество процессов). Если учесть что в персональных компьютерах обычно 1, 2, 4 или 8 ядер у процессора, то деление будет производиться без остатка. После деления матрицы на части по высоте – они обрабатываются последовательным алгоритмом, но необходимо учесть, то при этом невозможно обработать граничные строки (за исключением первой и последней в матрице) – после завершения параллельных вычислений, части собираются обратно в одну матрицу, а оставшиеся строки необходимо отфильтровать отдельно.

Анализ эффективности

Время фильтрации 1го элемента строки:

(2*9+9*ln(9)*2+1)*t , где t - время выполнения одной операции.

  • (2*9 операций – заполнение массива окрестности и соответствующего массива «жизней»
  • 9*ln(9)*2 – быстрая сортировка массивов

Фильтрация последующих элементов строки:

  • 9+3 – проход по массиву окрестности с добавлением новых элементов и удалением старых
  • 18 – копирование массива окрестности и массива «жизней» из вспомогательных массивов
  • 1 – выборка и присваивание медианы выходному элементу

Итого на требующееся на фильтрацию строки время:

((2*9+9*ln(9)*2)+1+(N-1)*(9+3+18+1))*t ≈(21N+37)*t

Время на фильтрацию всей матрицы:

Tp = (α+ω/β*N^2/p)+(21N+37)*t*(N/p+2*(p-1))

  • α – латентность
  • β - пропускная способность среды передачи
  • ω - размер элемента матрицы
  • 2*(p-1) – количество строк, оставшихся неотфильтрованными при делении матрицы на части)

T1 = (21N+37)*t*N

Ускорение: Sp = (T1)/(Tp) = ((21N+37)*t*N)/((21N+37)*t*(N/p+2*(p-1))+α+ω/β*N^2/p) = βp/ (β+ω/21) ,при N→∞

Эффективность: Ep = (Sp)/p = β/(β+ω/21) ,при N→∞

Демонстрация

Ширина матрицы

Время выполнения (сек)

Сравнение теоретических оценок ускорения с практическими:

Ширина матрицы

Характеристики машины: Intеl Core i7 920 @ 2.80GHz 2.00ГБ ОЗУ

латентность: a = 0,00005 cек

пропускная способность: b = 25,6 ГБ/с

время выполнения стандартной операции: t = 0,000000004912 сек

размер элемента набора: w = 4

Работу выполнили студенты группы 8411: Муравьев Владимир и Соловьев Павел

Digital signals processing

Тема 16. Медианные фильтры

Кому неведомо всегдашнее несоответствие между тем, что человек ищет, и что находит?

Николло Макиавелли. Итальянский политик, историк. 1469-1527 г.

Когда имеешь дело с ориентировкой на середину – будь вдвойне осторожен. Социализм тоже претендовал на средний рай для всех, а на выходе получил убогую казарму.

Эрнст Трубов. Уральский геофизик. ХХ в.

Введение.

1. Медианная фильтрация одномерных сигналов. Принцип фильтрации. Одномерные фильтры. Подавление статистических шумов. Импульсные и точечные шумы. Перепад плюс шум. Ковариационные функции. Преобразование статистики шумов. Частотные свойства фильтра. Разновидности медианных фильтров. Достоинства медианных фильтров. Недостатки медианных фильтров.

2. Медианная фильтрация изображений. Шумы в изображениях. Двумерные фильтры. Адаптивные двумерные фильтры. Фильтры на основе ранговой статистики.

Введение

Медианные фильтры достаточно часто применяются на практике как средство предварительной обработки цифровых данных. Специфической особенностью фильтров явно выраженная избирательность по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах окна (апертуры) фильтра, и резко выделяющихся на фоне соседних отсчетов. В то же время на монотонную составляющую последовательности медианный фильтр не действует, оставляя её без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут, например, сохранять без искажений резкие границы объектов, эффективно подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали. Это свойство позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных, уменьшения выбросов и импульсных помех. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки являются оптимальными при равномерном или гауссовом распределении помех, что в реальных сигналах может быть далеко не так. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией аддитивного белого шума, медианный фильтр дает меньшее значение среднеквадратической ошибки по сравнению с оптимальными линейными фильтрами. Особенно эффективным медианный фильтр оказывается при очистке сигналов от импульсных шумов при обработке изображений, акустических сигналов, передаче кодовых сигналов и т.п. Однако детальные исследования свойств медианных фильтров как средства фильтрации сигналов различного типа являются довольно редкими.

16.1. МедианНая фильтрацИя одномерных сигналов .

Принцип фильтрации. Медианы давно использовались и изучались в статистике как альтернатива средним арифметическим значениям отсчетов в оценке выборочных средних значений. Медианой числовой последовательности х 1 , х 2 , … , х n при нечетном n является средний по значению член ряда, получающегося при упорядочивании этой последовательности по возрастанию (или убыванию). Для четных n медиану обычно определяют как среднее арифметическое двух средних отсчетов упорядоченной последовательности.

Медианный фильтр представляет собой оконный фильтр, последовательно скользящий по массиву сигнала, и возвращающий на каждом шаге один из элементов, попавших в окно (апертуру) фильтра. Выходной сигнал y k скользящего медианного фильтра шириной 2n+1 для текущего отсчета k формируется из входного временного ряда …, x k -1 , x k , x k +1 ,… в соответствии с формулой:

y k = med(x k - n , x k - n +1 ,…, x k -1 , x k , x k +1 ,…, x k + n -1 , x k + n), (16.1.1)

где med(x 1 , …, x m , …, x 2n+1) = x n+1 , x m – элементы вариационного ряда, т.е. ранжированные в порядке возрастания значений x m: x 1 = min(x 1 , x 2 ,…, x 2n+1) ≤ x (2) ≤ x (3) ≤ … ≤ x 2n+1 = max(x 1 , x 2 ,…, x 2n+1).

Таким образом, медианная фильтрация осуществляет замену значений отсчетов в центре апертуры медианным значением исходных отсчетов внутри апертуры фильтра. На практике апертура фильтра для упрощения алгоритмов обработки данных, как правило, устанавливается с нечетным числом отсчетов, что и будет приниматься при рассмотрении в дальнейшем без дополнительных пояснений.

Одномерные фильтры. Медианная фильтрация реализуется в виде процедуры локальной обработки отсчетов в скользящем окне, которое включает определенное число отсчетов сигнала. Для каждого положения окна выделенные в нем отсчеты ранжируются по возрастанию или убыванию значений. Средний по своему положению отчет в ранжированном списке называется медианой рассматриваемой группы отсчетов. Этим отсчетом заменяется центральный отсчет в окне для обрабатываемого сигнала. В силу этого медианный фильтр относится к числу нелинейных фильтров, заменяющим медианным значением аномальные точки и выбросы независимо от их амплитудных значений, и является устойчивым по определению, способным аннулировать даже бесконечно большие отсчеты.

Алгоритм медианной фильтрации обладает явно выраженной избирательностью к элементам массива с немонотонной составляющей последовательности чисел в пределах апертуры и наиболее эффективно исключает из сигналов одиночные выбросы, отрицательные и положительные, попадающие на края ранжированного списка. С учетом ранжирования в списке медианные фильтры хорошо подавляют шумы и помехи, протяженность которых составляет менее половины окна. Стабильной точкой является последовательность (в одномерном случае) или массив (в двумерном случае), которые не изменяются при медианной фильтрации. В одномерном случае стабильными точками медианных фильтров являются "локально-монотонные" последовательности, которые медианный фильтр оставляет без изменений. Исключение составляют некоторые периодические двоичные последовательности.

Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут сохранять без искажений резкие границы объектов, подавляя некоррелированные и слабо коррелированные помехи и малоразмерные детали. При аналогичных условиях алгоритмы линейной фильтрации неизбежно «смазывает» резкие границы и контуры объектов. На рис. 16.1.1 приведен пример обработки сигнала с импульсными шумами медианным и треугольным фильтрами с одинаковыми размерами окна N=3. Преимущество медианного фильтра очевидно.

В качестве начальных и конечных условий фильтрации обычно принимаются концевые значения сигналов, либо медиана находится только для тех точек, которые вписываются в пределы апертуры.

На рис. 16.1.2 приведен пример медианной фильтрации модельного сигнала a k , составленного из детерминированного сигнала s k в сумме со случайным сигналом q k , имеющим равномерное распределение с одиночными импульсными выбросами. Окно фильтра равно 5. Результат фильтрации – отсчеты b k .

Подавление статистических шумов медианными фильтрами в связи с их нелинейностью обычно рассматривается только на качественном уровне. Нельзя также четко разграничить влияние медианных фильтров на сигнал и шум.

Если значения элементов последовательности чисел {x i } в апертуре фильтра являются независимыми одинаково распределенными (НОР) случайными величинами со средним значением m

то математическое ожидание M{z} = 0 и, следовательно, M{x}=m.

Пусть F(x) и f(x)=F"(x) обозначают функции распределения и плотности вероятностей величин х. Согласно теории вероятностей, распределение у = med(х 1 , ... , х n) для больших n является приблизительно нормальным N(m t ,  n), где m t - теоретическая медиана, определяемая из условия F(m t) = 0.5, при этом дисперсия распределения:

 n 2 = 1/(n 4f 2 (m t)). (16.1.2)

Приведенные результаты справедливы как для одномерной, так и для двумерной фильтрации, если n выбирать равным числу точек в апертуре фильтра. Если f(x) симметрична относительно m, то распределение медиан также будет симметрично относительно m и, таким образом, справедлива формула:

M{med(х 1 , ... , х n)} = M{x i } = m.

Если случайные величины х являются НОР и равномерно распределены на отрезке , то можно найти точное значение дисперсии медианы по формуле:

 n 2 = 1/(4(n+2)) = 3 x /(n+2).

Если случайные величины х являются независимыми, одинаково распределенными с нормальным распределением N(m, ), то m t = m. Модифицированная формула дисперсии медианы для малых нечетных значений n:

 g    2 /(2n-2+). (16.1.2")

Значение дисперсии шумов для случайных величин в скользящем n-окне арифметического усреднения (фильтр МНК первого порядка) имеет значение  2 /n. Это означает, что для нормального белого шума при равных значениях n окон медианного фильтра и фильтра скользящего усреднения, дисперсия шумов на выходе медианного фильтра приблизительно на 57% больше, чем у фильтра скользящего среднего. Чтобы медианный фильтр давал ту же дисперсию, что и скользящее усреднение, его апертура должна быть на 57% больше. При этом следует иметь в виду, что искажение полезных сигналов, особенно при наличии в них скачков и крутых перепадов, даже при большей апертуре медианного фильтра может оказаться меньше, чем у фильтров скользящего среднего.

Положение изменяется, если плотность распределения случайных величин существенно отличается от нормального и имеет длинные хвосты, которые и ликвидируются медианным фильтром, что обеспечивает оптимальную и наиболее правдоподобную оценку текущих значений сигнала по минимуму среднеквадратического приближения. Так, при экспоненциальном (по модулю) распределении плотности шумов

f(x) = (
/ exp(-
|x-m| /)

дисперсия шумов после медианного фильтра на 50% меньше, чем после фильтра скользящего среднего.

Предельным случаем таких распределений является импульсный шум, случайный по амплитудам и месту появления, который и подавляется медианными фильтрами с наибольшей эффективностью.

Импульсные и точечные шумы . При регистрации, обработке и обмене данными в современных измерительно-вычислительных и информационных системах потоки сигналов кроме полезного сигнала s(t- 0) и флуктуационных шумов q(t) содержат, как правило, импульсные потоки g(t)=
(t- k) различной интенсивности с регулярной или хаотической структурой

x(t) = s(t- 0) + g(t) + q(t). (16.1.3)

Под импульсным шумом понимается искажение сигналов большими импульсными выбросами произвольной полярности и малой длительности. Причиной появления импульсных потоков могут быть как внешние импульсные электромагнитные помехи, так и наводки, сбои и помехи в работе самих систем. Совокупность статистически распределенного шума и потока квазидетерминированных импульсов представляет собой комбинированную помеху. Радикальный метод борьбы с комбинированной помехой - применение помехоустойчивых кодов. Однако это приводит к снижению скорости и усложнению систем приемо-передачи данных. Простым, но достаточно эффективным альтернативным методом очистки сигналов в таких условиях является двухэтапный алгоритм обработки сигналов x(t), где на первом этапе производится устранение из потока x(t) шумовых импульсов, а на втором – очистка сигнала частотными фильтрами от статистических шумов.Для сигналов, искаженных действием импульсных шумов, отсутствует строгая в математическом смысле постановка и решение задачи фильтрации. Известны лишь эвристические алгоритмы, наиболее приемлемым из которых является алгоритм медианной фильтрации.

Допустим, что шум q(t) представляет собой статистический процесс с нулевым математическим ожиданием, полезный сигнал s(t- 0) имеет неизвестное временное положение  0  , а поток шумовых импульсов g(t) имеет вид:

g(t) = k a k g(t- k), (16.1.4)

где a k - амплитуда импульсов в потоке,  k - неизвестное временное положение импульсов,  k =1 с вероятностью p k и  k =0 с вероятностью 1-p k . Такое задание импульсной помехи соответствует потоку Бернулли /44/.

При применении к потоку x(t) скользящей медианной фильтрации с окном N отсчетов (N – нечетное) медианный фильтр полностью устраняет одиночные импульсы, удаленные друг от друга минимум на половину апертуры фильтра, и подавляет импульсные помехи, если количество импульсов в пределах апертуры не превосходит (N-1)/2. В этом случае, при p k = p для всех импульсов помехи, вероятность подавления помех может быть определена по выражению /3i/:

R(p) =
p m (1-p) N - p . (16.1.5)

На рис. 16.1.3 приведены результаты расчетов вероятности подавления импульсной помехи медианным фильтром. При p<0.5 результаты статистического моделирования процесса показывают хорошее соответствие расчетным значениям. Для интенсивных импульсных шумовых потоков при p>0.5 медианная фильтрация становится мало эффективной, т.к. происходит не подавление, а усиление и трансформация его в поток импульсов другой структуры (со случайной длительностью).

Если вероятность ошибки не очень велика, то медианная фильтрация даже с достаточно малой апертурой значительно уменьшит число ошибок. Эффективность исключения шумовых импульсов повышается с увеличением апертуры фильтра, но одновременно может увеличиваться и искажение полезного сигнала.

Перепад плюс шум. Рассмотрим фильтрацию перепадов при наличии аддитивного белого шума, т. е. фильтрацию последовательностей, или изображений, с

где s - детерминированный сигнал, равный 0 по одну сторону or перепада и h - по другую, a z - случайные значения белого шума. Предположим, что случайные значения шума z распределены по нормальному закону N(0, ). Для начала рассмотрим одномерную фильтрацию и будем считать, что перепад происходит в точке i = 1, таким образом, что для i0 величина x i есть N(0, ), а для i≥1 величина х i есть N(h, ).

На рис. 16.1.4 показана последовательность значений математического ожидания медиан и скользящего среднего вблизи перепада высотой h = 5 при n = 3. Значения скользящего среднего следуют по наклонной линии, что свидетельствует о смазывании перепада. Поведение математического ожидания значений медианы также свидетельствует о некотором смазывании, хотя в гораздо меньше, чем для скользящего среднего.

Если воспользоваться мерой среднеквадратичной ошибки (СКО), усредненной по N точкам вблизи перепада, и вычислить значения СКО в зависимости от значений h, то нетрудно зафиксировать, что при малых значениях h<2 СКО для скользящего среднего немного меньше, чем для медианы, но при h>3 СКО медианы значительно меньше, чем СКО среднего. Этот результат показывает, что скользящая медиана значительно лучше, чем скользящее среднее, для перепадов большой высоты. Похожие результаты можно получить и для апертуры n=5, и для двумерной фильтрации с апертурами 3x3 и 5x5. Таким образом, математические ожидания медианы для малых h близки к математическим ожиданиям для соответствующих средних, но для больших h они асимптотически ограничены. Объясняется это тем, что при больших h (скажем, h>4) переменные х со средним значением 0 (для данного примера) будут резко отделены от переменных х со средним h.

Использованная мера точности может характеризовать только резкость поперек перепада и ничего не говорит о гладкости фильтрованного изображения вдоль перепада. Скользящее усреднение дает сигналы, гладкие вдоль перепада, тогда как при обработке с помощью медианным фильтром протяженные перепады оказываются слегка изрезанными.

Ковариационные функции при белом шуме на входе. Нормализованные функции автокорреляции выходных сигналов медианных и усредняющих фильтров подобны друг другу. Сходство функций корреляции до некоторой степени объясняется относительно высокой корреляцией между медианой и средним, которая достигает 0.8 при больших n.

Приближенная формула функции автоковариации для последовательности, подвергнутой медианной фильтрации определяется выражением:

K() =  2 /(n+(/2)-1))
(1-|j|/n) arcsin((j+)). (16.1.6)

Скользящая медиана почти не сглаживает процессы, ведущие себя на больших интервалах, как функции вида x i = (-1) i y. В самом деле, форма входной последовательности x i = (-1) i y, будет оставлена медианным фильтром без изменений, хотя для некоторых значений n она сдвинется на один шаг. Скользящее усреднение оказывает большое сглаживающее действие на подобный процесс, так как регулярные флуктуации значений х полностью уничтожаются. В целом можно ожидать, что приближенные формулы ковариационных функций скользящих медиан будут полезны только для последовательностей, на которые медианные фильтры действуют так же, как и скользящее усреднение. В случае с сильно осциллирующими последовательностями и последовательностями перепадов большой пользы от них ждать не следует.

Преобразование статистики шумов. Медианная фильтрация является нелинейной операцией над входным процессом, которая наряду с исключением импульсных помех изменяет и распределение статистических шумов q(t), что может быть нежелательным для построения последующих фильтров. Аналитический расчет преобразования статистики шумов затруднителен из-за слабой разработанности соответствующего математического аппарата.

Рис. 16.1.5. Гистограммы шумовых сигналов.

На рис. 16.1.5 приведены примеры медианной фильтрации модельных шумовых сигналов с гауссовым и равномерным распределением при различной ширине окна фильтра. Как следует из этих графиков, при фильтрации происходит преимущественное подавление шумовых сигналов с большими отклонениями отсчетов от среднего значения с уменьшением стандарта (СКО - среднеквадратического отклонения) распределения. Уменьшение стандарта тем больше, чем больше окно фильтра. Этим же определяется и преобразование формы распределения выходного равномерного шума (а равно и других распределений шумов) к гауссовой по мере увеличения размера окна фильтра.

На рис. 16.1.6 приведен пример изменения гистограмм шума при выполнении дву- и трехкратной последовательной фильтрации. Как видно из графиков, основной эффект фильтрации достигается на первом цикле.

Уменьшение количества больших шумовых отклонений от среднего значения шума приводит также к изменению спектра шума и к определенному подавлению его высокочастотных составляющих, которых больше в "хвостах" шумовых распределений. Это можно видеть на рис. 16.1.7 на спектрах плотности мощности входного и выходного сигналов.

Следует, однако, заметить, что нелинейность медианной фильтрации (замена больших отклонений средними по рангу в окне) приводит к повышению низкочастотных составляющих спектра шума. Этот эффект наглядно виден на рис. 16.1.8, где приводятся сглаженные значения отношения модулей спектров выходного модельного шумового сигнала к входному, т.е. эквивалент коэффициента передачи фильтром шумовых сигналов. На коэффициент передачи фильтром полезных низкочастотных сигналов это не отражается, он остается равным 1, но может приводить к ухудшению отношения сигнал/шум.

Попутно заметим, что медианный фильтр можно применять и по прямо противоположному назначению – обнаружению в сигналах и выделению квазидетерминированных помех.

Частотные свойства фильтра . Для описания линейных фильтров используют импульсную реакцию на единичный импульс, на ступенчатую функцию, и частотные передаточные функции в главном частотном диапазоне. Так как медианный фильтр ликвидирует единичные импульсы и сохраняет перепады, то можно говорить, что импульсная реакция фильтра равна нулю, а отклик на ступенчатую функцию равен 1. Что касается частотной характеристики фильтра, то, в силу нелинейности фильтра, ее нельзя представить какой-либо детерминированной функцией апертуры и частоты. В какой-то мере можно говорить о реакции фильтра на косинусоидальные функции, которая также существенно различается для низких и высоких частот главного частотного диапазона и фазы гармоник в апертуре фильтра, что можно видеть на рис. 16.1.9.

Рис. 16.1.9.

На рисунке приведено моделирование однотональных гармонических со случайной начальной фазой. Математические модели сигналов задавались в главном диапазоне спектральной области (0-2количество точек дискретизации спектра - 2000). Модуль гармоники устанавливался равным 1, при этом модуль спектра выходного сигнала после фильтрации, по-существу, отображает передаточную функцию фильтра. Окно медианного фильтра равно 3.

Как показывает моделирование, для низких частот, когда период гармоники много больше окна апертуры фильтров, скользящая медиана и скользящее среднее имеют сходные характеристики, коэффициент передачи К п однотональных сигналов равен 1. По мере роста частоты гармоники и в зависимости от фазы сигнала в апертуре фильтра начинается искажение сигнала на экстремальных значениях (занижение экстремальных значений), и значение К п начинает уменьшаться. Когда значение апертуры медианного фильтра становится соизмеримым с периодом сигнала, в спектре выходного сигнала появляются "ложные" гармоники, вызванные интерференцией частоты входного сигнала с частотой его дискретизации (нижние графики на рисунке 16.1.9).

Рис. 16.1.10. Медианная фильтрация многотональных сигналов

Для многотональных входных сигналов начинается также интерференция частот гармоник между собой, что приводит к появлению многочисленных ложных высокочастотных гармоник (верхние графики на рис. 16.1.10), а при наличии во входном сигнале высокочастотных гармоник искажаются также и коэффициенты передачи низкочастотных гармоник (нижние графики на рисунке), т.е. частотные отклики для одиночных гармонических функций не соответствуют передаточным характеристикам для произвольных сигналов, являющихся суммой косинусоидальных функций, т.к. передаточные функции становятся резко нерегулярными в силу интерференции разных частот.

Картина частотной интерференции зависит также от фазы гармоник, что усиливает нерегулярность конечных результатов и наглядно видна на рис. 16.1.11 при различных случайных реализациях фазы гармоник. При увеличении размеров апертуры фильтров нерегулярность передачи фильтров увеличивается.

Рис. 16.1.11.

Разновидности медианных фильтров.

Взвешенно-медианные фильтры применяют, если желательно придать больший вес центральным точкам. Это достигается путем повторения k i раз каждого набора отсчетов в апертуре фильтра. Так, например, при n=3 и k -1 =k 1 =2, k 0 =3 вычисление взвешенной медианы входного числового ряда производится по формуле:

y i = med (x i - 1 , x i - 1 , x 0 , x 0 , x 0 , x 1 , x 1).

Такая растянутая последовательность также сохраняет перепады сигнала и в определенных условиях позволяет увеличить подавление дисперсии статистических шумов в сигнале. Ни один из весовых коэффициентов k i не должен быть значительно больше всех других.

Итерационные медианные фильтры выполняются последовательным повторением медианной фильтрации. Если апертура единичной медианной фильтрации сохраняет перепады в сигнале, то они сохраняются при итеративном применении фильтра вплоть до тех пор, пока не прекратятся изменения в фильтруемом сигнале, при этом конечный результат существенно отличается от итеративного применения скользящего среднего, где в пределе получается постоянная числовая последовательность. При использовании итерационных фильтров можно изменять апертуру фильтра при каждом шаге итерации.

Достоинства медианных фильтров.

    Простая структура фильтра, как для аппаратной, так и для программной реализации.

    Фильтр не изменяет ступенчатые и пилообразные функции.

    Фильтр хорошо подавляет одиночные импульсные помехи и случайные шумовые выбросы отсчетов.

Недостатки медианных фильтров.

    Медианная фильтрация нелинейна, так как медиана суммы двух произвольных последовательностей не равна сумме их медиан, что в ряде случаев может усложнять математический анализ сигналов.

    Фильтр вызывает уплощение вершин треугольных функций.

    Подавление белого и гауссового шума менее эффективно, чем у линейных фильтров. Слабая эффективность наблюдается также при фильтрации флюктуационного шума.

    При увеличении размеров окна фильтра происходит размытие крутых изменений сигнала и скачков.

Недостатки метода можно уменьшить, если применять медианную фильтрацию с адаптивным изменением размера окна фильтра в зависимости от динамики сигнала и характера шумов (адаптивная медианная фильтрация). В качестве критерия размера окна можно использовать, например, величину отклонения значений соседних отсчетов относительно центрального ранжированного отсчета /1i/. При уменьшении этой величины ниже определенного порога размер окна увеличивается.

Введение

медианный фильтрация цифровой сигнал

Цифровая обработка сигналов нашла широкое применение в различных сферах деятельности: телевидении, радиолокации, связи, метеорологии, сейсмологии, медицине, анализе речи и телефонии, а также при обработке изображений и полей различной природы. В некоторых сферах экономической деятельности, например, таких как банковское дело, обработка цифровых финансовых потоков имеет принципиальное значение.

Развитие вычислительной и микропроцессорной техники приводит к созданию все более надежного, быстродействующего, миниатюрного, качественного и недорогого оборудования. Цифровые технологии стали столь массовыми, что их используем в обыденной жизни, особо не замечая: сотовый телефон, проигрыватель компакт-дисков, компьютер и т. д.

В ходе данной работы необходимо рассмотреть достоинства и недостатки медианной фильтрации. Ознакомиться с принципами работы медианных фильтров. При помощи программы MatLab712 R2011a, на примере показать его работу.

Теоретическая часть ЦОС

Медианный фильтр

Все линейные алгоритмы фильтрации приводят к сглаживанию резких перепадов яркости изображений, прошедших обработку. Этот недостаток, особенно существенный, если потребителем информации является человек, принципиально не может быть исключен в рамках линейной обработки. Дело в том, что линейные процедуры являются оптимальными при гауссовском распределении сигналов, помех и наблюдаемых данных. Реальные изображения, строго говоря, не подчиняются данному распределению вероятностей. Причем, одна из основных причин этого состоит в наличии у изображений разнообразных границ, перепадов яркости, переходов от одной текстуры к другой и т. п. Поддаваясь локальному гауссовскому описанию в пределах ограниченных участков, многие реальные изображения в этой связи плохо представляются как глобально гауссовские объекты. Именно это и служит причиной плохой передачи границ при линейной фильтрации.

Вторая особенность линейной фильтрации - ее оптимальность, как только что упоминалось, при гауссовском характере помех. Обычно этому условию отвечают шумовые помехи на изображениях, поэтому при их подавлении линейные алгоритмы имеют высокие показатели. Однако, часто приходится иметь дело с изображениями, искаженными помехами других типов. Одной из них является импульсная помеха. При ее воздействии на изображении наблюдаются белые или (и) черные точки, хаотически разбросанные по кадру. Применение линейной фильтрации в этом случае неэффективно - каждый из входных импульсов (по сути - дельта-функция) дает отклик в виде импульсной характеристики фильтра, а их совокупность способствует распространению помехи на всю площадь кадра.

Удачным решением перечисленных проблем является применение медианной фильтрации, предложенной Дж. Тьюки в 1971 г. для анализа экономических процессов. Наиболее полное исследование медианной фильтрации применительно к обработке изображений представлено в сборнике . Отметим, что медианная фильтрация представляет собой эвристический метод обработки, ее алгоритм не является математическим решением строго сформулированной задачи. Поэтому исследователями уделяется большое внимание анализу эффективности обработки изображений на ее основе и сопоставлению с другими методами.

При применении медианного фильтра (МФ) происходит последовательная обработка каждой точки кадра, в результате чего образуется последовательность оценок. В идейном отношении обработка в различных точках независима (этим МФ похож на масочный фильтр), но в целях ее ускорения целесообразно алгоритмически на каждом шаге использовать ранее выполненные вычисления.

При медианной фильтрации используется двумерное окно (апертура фильтра), обычно имеющее центральную симметрию, при этом его центр располагается в текущей точке фильтрации. На рис. 1.1 показаны два примера наиболее часто применяемых вариантов окон в виде креста и в виде квадрата. Размеры апертуры принадлежат к числу параметров, оптимизируемых в процессе анализа эффективности алгоритма. Отсчеты изображения, оказавшиеся в пределах окна, образуют рабочую выборку текущего шага.

Рис. 1.1.

Двумерный характер окна позволяет выполнять, по существу, двумерную фильтрацию, поскольку для образования оценки привлекаются данные как из текущих строки и столбца, так и из соседних. Обозначим рабочую выборку в виде одномерного массива; число его элементов равняется размеру окна, а их расположение произвольно. Обычно применяют окна с нечетным числом точек (это автоматически обеспечивается при центральной симметрии апертуры и при вхождении самой центральной точки в ее состав). Если упорядочить последовательность по возрастанию, то ее медианой будет тот элемент выборки, который занимает центральное положение в этой упорядоченной последовательности. Полученное таким образом число и является продуктом фильтрации для текущей точки кадра. Понятно, что результат такой обработки в самом деле не зависит от того, в какой последовательности представлены элементы изображения в рабочей выборке. Введем формальное обозначение описанной процедуры в виде:

x * =med(y 1 , y 2 ,…, y n) (1.1)

Рассмотрим пример. Предположим, что выборка имеет вид: Y={136,110,99,45,250,55,158,104,75}, а элемент 250, расположенный в ее центре, соответствует текущей точке фильтрации (i 1 , i 2) (рис. 1.1). Большое значение яркости в этой точке кадра может быть результатом воздействия импульсной (точечной) помехи. Упорядоченная по возрастанию выборка имеет при этом вид {45,55,75,99,104,110,136,158,250}, следовательно, в соответствии с процедурой (1.1), получаем x * =med(y 1 , y 2 ,…, y 9)=104. Видим, что влияние “соседей” на результат фильтрации в текущей точке привело к “игнорированию” импульсного выброса яркости, что следует рассматривать как эффект фильтрации. Если импульсная помеха не является точечной, а покрывает некоторую локальную область, то она также может быть подавлена. Это произойдет, если размер этой локальной области будет меньше, чем половина размера апертуры МФ. Поэтому для подавления импульсных помех, поражающих локальные участки изображения, следует увеличивать размеры апертуры МФ.

Из (1.1) следует, что действие МФ состоит в “игнорировании” экстремальных значений входной выборки - как положительных, так и отрицательных выбросов. Такой принцип подавления помехи может быть применен и для ослабления шума на изображении. Однако исследование подавления шума при помощи медианной фильтрации показывает, что ее эффективность при решении этой задачи ниже, чем у линейной фильтрации.

Результаты экспериментов, иллюстрирующие работу МФ, приведены на рис. 1.2. В экспериментах применялся МФ, имеющий квадратную апертуру со стороной равной 3. В левом ряду представлены изображения, искаженные помехой, в правом - результаты их медианной фильтрации. На рис. 1.2 а и рис. 1.2.в показано исходное изображение, искаженное импульсной помехой. При ее наложении использовался датчик случайных чисел с равномерным на интервале законом распределения, вырабатывающий во всех точках кадра независимые случайные числа. Интенсивность помехи задавалась вероятностью p ее возникновения в каждой точке. Если для случайного числа n i1i2 , сформированного в точке (i 1 , i 2), выполнялось условие n i1i2

Рис. 1.2.

Рис. 1.2.д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум q 2 =-5 дБ, а рис. 1.2.е - результат его фильтрации медианным фильтром. Условия данного эксперимента позволяют сравнивать его результаты с результатами рассмотренной выше линейной фильтрации. В таблице 1.1 приведены данные, дающие возможность такого сравнения. Для различных методов фильтрации в этой таблице приводятся значения относительного среднего квадрата ошибок д 2 и коэффициента ослабления шума г для случая, когда отношение сигнал/шум на входе фильтра составляет -5 дБ.

Табл.1.1. Сравнение эффективности подавления шума при фильтрации изображений, q 2 =-5 дБ.

Наибольшей эффективностью обладает двумерный фильтр Винера, уменьшающий средний квадрат ошибок в 17 раз. Медианный фильтр имеет наименьшую из всех рассмотренных фильтров эффективность, ему соответствует г =5.86. Тем не менее, это число свидетельствует о том, что и при его помощи удается значительно снизить уровень шума на изображении.

Вместе с тем, как говорилось выше, и что демонстрирует рис. 1.2.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости. Но это и означает наличие чувствительности у МФ к перепадам яркости. Существует огромное множество интерпретаций методов работы МФ, рассмотрим ещё один, на примере использование его при обработке изображения клеток крови -- гранулоцитов. Перед измерением размера гранулоцита его изображение подвергалось сглаживанию медианным фильтром с целью устранения гранул, которые могут влиять на результат измерения. Обычно в процессе медианной фильтрации значения сигнала в некоторой окрестности точки, в которой вычисляется отклик фильтра, при помощи сортировки по возрастанию или убыванию выстраиваются в вариационный ряд. Отклик фильтра определяется как медиана -- значение сигнала середины (центра) вариационного ряда. В дальнейшем эту окрестность будем называть окном фильтра. Кроме того, для упрощения будем рассматривать фильтр с квадратным окном размером n?n .

Следовательно, при вычислении медианы в окне фильтра число операций с данными, например, число операций сортировки, равно n 2 . При обработке изображения размером M?N точек (пикселей) число операций с данными будет велико и составит M?N?n 2 . Различные операции требуют разных затрат времени выполнения. При последовательном сканировании изображения количество наиболее трудоемких операций сортировки можно сократить. Так, при переходе от точки о1 с окном w1 к точке о2 с окном w2 на рис. 1.3. можно из вариационного ряда окна w1 исключить точки столбца 1, отсортировать точки столбца 6 и объединить два полученных вариационных ряда в один. Такой алгоритм работает быстрее по сравнению с независимой сортировкой в каждом окне, однако общее число манипуляций с данными (пусть и менее трудоемких), например, хотя бы перебор данных, остается тем же самым, т. е. достаточно большим. Поэтому при медианной фильтрации изображений обычно ограничиваются окнами 3?3 или 5?5 и редко больше, что вполне достаточно, например, для устранения импульсных помех.

Рис. 1.3. Сканирование изображения окном медианного фильтра

Такие же ограничения вынужденно принимаются и для различных нелинейных операций морфологической обработки, выполняющейся в геометрическом пространстве изображения, и которые в отличие от линейных операций невозможно выполнять в пространстве Фурье. Вместе с тем существует ряд задач обработки изображений, которые можно было бы эффективно решить при помощи медианного фильтра, но они требуют окна большого размера. Одна из таких задач будет рассмотрена ниже. Поэтому возможное повышение скорости медианной фильтрации сулит большие перспективы в задачах обработки изображений.

Методы медианной фильтрации достаточное разнообразны. Их можно усовершенствовать. Один из таких апгрейдов называется - адаптивная медианная фильтрация.

Медианная фильтрация имеет и свои недостатки. В частности, экспериментально установлено, что у данного метода относительно слабая эффективность при фильтрации так называемого флуктуационного шума. Кроме того, при увеличении размера маски происходит размытие контуров изображения и, как следствие, снижение четкости изображения. Указанные недостатки метода можно уменьшить до минимума, если воспользоваться медианной фильтрацией с динамическим размером маски (адаптивной медианной фильтрацией). Принцип вычисления центрального отсчета при локальной обработке изображения скользящим окном остается все тот же. Эта медиана из набора упорядоченных отсчетов, попавших в окно (маску), а размер скользящего окна (маски) динамический и зависит от яркости соседних пикселей.

Введем пороговый коэффициент отклонения яркости S threshold = . Величины отклонения яркости соседних пикселей A(r, n, m), попавших в окно размером n?m, относительно яркости центрального отсчета A(r) запишутся в виде (1.2):

Тогда критерий, согласно которому необходимо увеличивать размер маски с центральным отсчетом r, будет иметь вид:

На основе описанного алгоритма была разработана компьютерная программа, подтвердившая на практике преимущества адаптивной медианной фильтрации.

Величина является порогом фильтрации .В приложениях используется еще целый ряд простейших нелинейных фильтров. Например, модуль изображения, содержащего пиксели с отрицательным значением, или фильтр, обнуляющий все значения пикселей, меньше данного порога.

Более сложным фильтром, задействующим в вычислениях окрестность пикселя, является медиана. Медианная фильтрация определяется следующим образом:

(8.10)

т.е. результат фильтрации есть медианное значение пикселей окрестности 1 Медианой набора чисел является число из набора, не меньшее половины чисел набора и не большее другой половины чисел набора. , форма которой выбирается произвольно. В разделе 8.2 мы рассмотрели шумоподавление при помощи сглаживающих фильтров. Шум с нулевым математическим ожиданием, добавленный к исходному сигналу, является только одним из видов помех. Медианная фильтрация способна эффективно справляться с помехами в более общем случае, когда помехи независимо воздействуют на отдельные пиксели.Например, такими помехами являются "битые" и "горячие" пиксели при цифровой съемке, "снеговой" шум, когда часть пикселей заменяется на пиксели с максимальной интенсивностью, и т.п. Преимущество медианной фильтрации перед линейной сглаживающей фильтрацией заключается в том, что "горячий" пиксель на темном фоне будет заменен на темный, а не "размазан" по окрестности (рис. 8.6).

Последней парой фильтров, которые мы рассмотрим в этом разделе, являются фильтры минимум и максимум, которые определяются по правилам

(8.11)
(8.12)

т.е. результат фильтрации есть минимальное и максимальное значения пикселей окрестности.

Медианный фильтр реализует нелинейную процедуру подавления шумов. Медианный фильтр представляет собой скользящее по полю изображения окно W, охватывающее нечетное число отсчетов. Центральный отсчет заменяется медианой всех элементов изображения, попавших в окно. Медианой дискретной последовательности x1, x2, ..., xL для нечетного L называют такой ее элемент, для которого существуют (L ? 1)/2 элементов, меньших или равных ему по величине, и (L ? 1)/2 элементов, больших или равных ему по величине. Другими словами, медианой является средний по порядку член ряда, получающегося при упорядочении исходной последовательности.

Например, med(20, 10, 3, 7, 7) = 7.

Двумерный медианный фильтр с окном W определим следующим образом:

Медианный фильтр используется для подавления аддитивного и импульсного шумов на изображении. Характерной особенностью медианного фильтра является сохранение перепадов яркости (контуров). Особенно эффективным медианный фильтр является в случае импульсного шума. На показано воздействие сглаживающего и медианного фильтров с трехэлементным окном на зашумленный аддитивным шумом перепад яркости для одномерного сигнала.

Что касается импульсного шума, то, медианный фильтр с окном 3 x 3 полностью подавляет одиночные выбросы на равномерном фоне, а также группы из двух, трех и четырех импульсных выбросов. В общем случае для подавления группы импульсных помех размеры окна должны быть по меньшей мере вдвое больше размеров группы помех.

Среди медианных фильтров с окном 3х3 наиболее распространены следующие:

Координаты представленных масок означают, сколько раз соответствующий пиксель входит в описанную выше упорядоченную последовательность.

Одним из эффективных путей устранения импульсных шумов на изображении является применение медианного фильтра.

Для каждого пикселя в некотором его окружении (окне) ищется медианное значение и присваивается этому пикселю. Определение медианного значения: если массив пикселей отсортировать по их значению, медианой будет серединный элемент этого массива. Размер окна соответственно должен быть нечетным, чтобы этот серединный элемент существовал.

Медиану также можно определить формулой:

где W - множество пикселей, среди которых ищется медиана, а fi - значения яркостей этих пикселей.

Для цветных изображений используется векторный медианный фильтр (VMF):

где Fi - значения пикселей в трехмерном цветовом пространстве, а d - произвольная метрика (например, евклидова).

Однако в чистом виде медианный фильтр размывает мелкие детали, величина которых меньше размера окна для поиска медианы, поэтому на практике практически не используется.



Понравилась статья? Поделиться с друзьями: