Орбиты вокруг земли. Что такое геостационарная орбита

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО)представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля - «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля - спутник» занимает около 0,12 секунды, а «Земля - спутник - Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник - спутник - приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.

Большинство космических полётов выполняется не по круговым, а по эллиптическим орбитам, высота которых меняется в зависимости от местоположения над Землёй. Высота так называемой «низкой опорной» орбиты, от которой «отталкивается» большинство космических кораблей, равна примерно 200 километрам над уровнем моря. Если быть точным, перигей такой орбиты равен 193 километрам, а апогей составляет 220 километров. Однако на опорной орбите имеется большое количество мусора, оставленного за полвека освоения космоса, поэтому современные космические корабли, включив свои двигатели, перебираются на более высокую орбиту. Так, например, Международная Космическая Станция (МКС ) в 2017 году вращалась на высоте порядка 417 километров , то есть в два раза выше опорной орбиты.

Высота орбиты большинства космиечских кораблей зависит от массы корабля, места его запуска и мощности его двигателей. У космонавтов она варьируется от 150 до 500 километров. Так, например, Юрий Гагарин летел на орбите с перигеем в 175 км и апогеем в 320 км. Второй советский космонавт Герман Титов летел на орбите с перигеем в 183 км и апогеем в 244 км. Американские «челноки» летали на орбитах высотой от 400 до 500 километров . Примерно такая же высота и у всех современных кораблей, доставляющих людей и грузы на МКС.

В отличие от пилотируемых космических кораблей, которым надо вернуть космонавтов на Землю, искусственные спутники летают на гораздо более высоких орбитах. Высота орбиты спутника, вращающегося на геостационарной орбите, может быть рассчитана, опираясь на данные о массе и диаметре Земли. В результате нехитрых физических расчетов можно выяснить, что высота геостационарной орбиты , то есть такой, при которой спутник «зависает» над одной точкой на поверхности земли, равна 35 786 километрам . Это очень большое удаление от Земли, поэтому время обмена сигналом с таким спутником может достигать 0,5 секунд, что делает его непригодным, например, для обслуживания онлайн-игр.

Сегодня 18 марта 2019 года. А вы знаете, какой сегодня праздник ?



Расскажите Какова высота орбиты полёта космонавтов и спутников друзьям в социальных сетях:

Подобно тому, как места в театре позволяют по-разному взглянуть на представление, различные орбиты спутников дают перспективу, каждая из которых имеет свое назначение. Одни кажутся висящими над точкой поверхности, они обеспечивают постоянный обзор одной стороны Земли, в то время как другие кружат вокруг нашей планеты, за день проносясь над множеством мест.

Типы орбит

На какой высоте летают спутники? Различают 3 типа околоземных орбит: высокие, средние и низкие. На высокой, наиболее удаленной от поверхности, как правило, находятся многие погодные и некоторые спутники связи. Сателлиты, вращающиеся на средней околоземной орбите, включают навигационные и специальные, предназначенные для мониторинга конкретного региона. Большинство научных космических аппаратов, в том числе флот системы наблюдения за поверхностью Земли НАСА, находится на низкой орбите.

От того, на какой высоте летают спутники, зависит скорость их движения. По мере приближения к Земле гравитация становится все сильнее, и движение ускоряется. Например, спутнику НАСА Aqua требуется около 99 минут, чтобы облететь вокруг нашей планеты на высоте около 705 км, а метеорологическому аппарату, удаленному на 35 786 км от поверхности, для этого потребуется 23 часа, 56 минут и 4 секунды. На расстоянии 384 403 км от центра Земли Луна завершает один оборот за 28 дней.

Аэродинамический парадокс

Изменение высоты спутника также изменяет его скорость движения по орбите. Здесь наблюдается парадокс. Если оператор спутника хочет повысить его скорость, он не может просто запустить двигатели для ускорения. Это увеличит орбиту (и высоту), что приведет к уменьшению скорости. Вместо этого следует запустить двигатели в направлении, противоположном направлению движения спутника, т. е. совершить действие, которое на Земле бы замедлило движущееся транспортное средство. Такое действие переместит его ниже, что позволит увеличить скорость.

Характеристики орбит

В дополнение к высоте, путь движения спутника характеризуется эксцентриситетом и наклонением. Первый относится к форме орбиты. Спутник с низким эксцентриситетом движется по траектории, близкой к круговой. Эксцентричная орбита имеет форму эллипса. Расстояние от космического аппарата до Земли зависит от его положения.

Наклонение - это угол орбиты по отношению к экватору. Спутник, который вращается непосредственно над экватором, имеет нулевой наклон. Если космический аппарат проходит над северным и южным полюсами (географическими, а не магнитными), его наклон составляет 90°.

Все вместе - высота, эксцентриситет и наклонение - определяют движение сателлита и то, как с его точки зрения будет выглядеть Земля.

Высокая околоземная

Когда спутник достигает ровно 42164 км от центра Земли (около 36 тыс. км от поверхности), он входит в зону, где его орбита соответствует вращению нашей планеты. Поскольку аппарат движется с той же скоростью, что и Земля, т. е. его период обращения равен 24 ч, кажется, что он остается на месте над единственной долготой, хотя и может дрейфовать с севера на юг. Эта специальная высокая орбита называется геосинхронной.

Спутник движется по круговой орбите прямо над экватором (эксцентриситет и наклонение равны нулю) и относительно Земли стоит на месте. Он всегда расположен над одной и той же точкой на ее поверхности.

Орбита «Молния» (наклонение 63,4°) используется для наблюдения в высоких широтах. Геостационарные спутники привязаны к экватору, поэтому они не подходят для дальних северных или южных регионов. Эта орбита весьма эксцентрична: космический аппарат движется по вытянутому эллипсу с Землей, расположенной близко к одному краю. Так как спутник ускоряется под действием силы тяжести, он движется очень быстро, когда находится близко к нашей планете. При удалении его скорость замедляется, поэтому он больше времени проводит на вершине орбиты в самом дальнем от Земли краю, расстояние до которого может достигать 40 тыс. км. Период обращения составляет 12 ч, но около двух третей этого времени спутник проводит над одним полушарием. Подобно полусинхронной орбите сателлит проходит по одному и тому же пути через каждые 24 ч. Используется для связи на крайнем севере или юге.

Низкая околоземная

Большинство научных спутников, многие метеорологические и космическая станция находятся на почти круговой низкой околоземной орбите. Их наклон зависит от того, мониторингом чего они занимаются. TRMM был запущен для мониторинга осадков в тропиках, поэтому имеет относительно низкое наклонение (35°), оставаясь вблизи экватора.

Многие из спутников системы наблюдения НАСА имеют почти полярную высоконаклонную орбиту. Космический аппарат движется вокруг Земли от полюса до полюса с периодом 99 мин. Половину времени он проходит над дневной стороной нашей планеты, а на полюсе переходит на ночную.

По мере движения спутника под ним вращается Земля. К тому времени, когда аппарат переходит на освещенный участок, он находится над областью, прилегающей к зоне прохождения своей последней орбиты. За 24-часовой период полярные спутники покрывают большую часть Земли дважды: один раз днем и один раз ночью.

Солнечно-синхронная орбита

Подобно тому как геосинхронные спутники должны находиться над экватором, что позволяет им оставаться над одной точкой, полярно-орбитальные имеют способность оставаться в одном времени. Их орбита является солнечно-синхронной - при пересечении космическим аппаратом экватора местное солнечное время всегда одно и то же. Например, спутник Terra пересекает его над Бразилией всегда в 10:30 утра. Следующее пересечение через 99 мин над Эквадором или Колумбией происходит также в 10:30 по местному времени.

Солнечно-синхронная орбита необходима для науки, так как позволяет сохранять солнечного света на поверхность Земли, хотя он будет меняться в зависимости от сезона. Такое постоянство означает, что ученые могут сравнивать изображения нашей планеты одного времени года в течение нескольких лет, не беспокоясь о слишком больших скачках в освещении, которые могут создать иллюзию изменений. Без солнечно-синхронной орбиты было бы сложно отслеживать их с течением времени и собирать информацию, необходимую для изучения изменений климата.

Путь спутника здесь очень ограничен. Если он находится на высоте 100 км, орбита должна иметь наклон 96°. Любое отклонение будет недопустимым. Поскольку сопротивление атмосферы и сила притяжения Солнца и Луны изменяют орбиту аппарата, ее необходимо регулярно корректировать.

Выведение на орбиту: запуск

Запуск спутника требует энергии, количество которой зависит от расположения места старта, высоты и наклона будущей траектории его движения. Чтобы добраться до удаленной орбиты, требуется затратить больше энергии. Спутники со значительным наклоном (например, полярные) более энергозатратны, чем те, которые кружат над экватором. Выведению на орбиту с низким наклоном помогает вращение Земли. движется под углом 51,6397°. Это необходимо для того, чтобы космическим челнокам и российским ракетам было легче добраться до нее. Высота МКС - 337-430 км. Полярные спутники, с другой стороны, от импульса Земли помощи не получают, поэтому им требуется больше энергии, чтобы подняться на такое же расстояние.

Корректировка

После запуска спутника необходимо приложить усилия, чтобы удержать его на определенной орбите. Поскольку Земля не является идеальной сферой, ее гравитация в некоторых местах сильнее. Эта неравномерность, наряду с притяжением Солнца, Луны и Юпитера (самой массивной планеты Солнечной системы), изменяет наклон орбиты. На протяжении всего своего срока службы положение спутников GOES корректировалось три или четыре раза. Низкоорбитальные аппараты НАСА должны регулировать свой наклон ежегодно.

Кроме того, на околоземные спутники оказывает воздействие атмосфера. Самые верхние слои, хотя и достаточно разрежены, оказывают достаточно сильное сопротивление, чтобы притягивать их ближе к Земле. Действие силы тяжести приводит к ускорению спутников. Со временем они сгорают, по спирали опускаясь все ниже и быстрее в атмосферу, или падают на Землю.

Атмосферное сопротивление сильнее, когда Солнце активно. Так же, как воздух в воздушном шаре расширяется и поднимается при нагревании, атмосфера поднимается и расширяется, когда Солнце дает ей дополнительную энергию. Разреженные слои атмосферы поднимаются, а их место занимают более плотные. Поэтому спутники на орбите Земли должны изменять свое положение примерно четыре раза в год, чтобы компенсировать сопротивление атмосферы. Когда солнечная активность максимальна, положение аппарата приходится корректировать каждые 2-3 недели.

Космический мусор

Третья причина, вынуждающая менять орбиту - космический мусор. Один из коммуникационных спутников Iridium столкнулся с нефункционирующим российским космическим аппаратом. Они разбились, образовав облако мусора, состоящее из более чем 2500 частей. Каждый элемент был добавлен ​​в базу данных, которая сегодня насчитывает свыше 18000 объектов техногенного происхождения.

НАСА тщательно отслеживает все, что может оказаться на пути спутников, т. к. из-за космического мусора уже несколько раз приходилось менять орбиты.

Инженеры отслеживают положение космического мусора и сателлитов, которые могут помешать движению и по мере необходимости тщательно планируют маневры уклонения. Эта же команда планирует и выполняет маневры по регулировке наклона и высоты спутника.

Весьма популярной спутниковой орбитой является геостационарная орбита. Она используется для размещения спутников многих типов, включая спутники, ведущие прямое телерадиовещание, спутники, обеспечивающие связь, а также релейные системы.

Преимуществом геостационарной орбиты является то, что спутник, находящийся на ней, постоянно располагается в одной и той же позиции, что позволяет направлять на него фиксированную антенну наземной станции.

Читайте также:

Этот фактор является чрезвычайно важным для организации таких систем, как прямое телерадиовещание через спутник, где использование постоянно движущейся антенны, следующей за спутником, было бы крайне непрактичным.

Необходимо внимательно относиться к использованию сокращений, принятых для обозначения геостационарной орбиты. Мы можем встретить аббревиатуры GEO и GSO, и обе они используются для обозначения как геостационарной, так и геосинхронной орбиты.

Развитие геостационарных орбит

Идеи относительно возможности использования геостационарной орбиты для размещения на ней спутников выдвигались на протяжении многих лет. В качестве возможного автора положений, лежащих в основе данной идеи, часто называют российского теоретика и научного фантаста Константина Циолковского. Однако впервые о возможности размещения космических аппаратов на высоте 35 900 километров над Землёй с периодом обращения в 24 часа, дающим им возможность «парить» в одной точке над экватором, написали Герман Оберт и Герман Поточник.

Следующий важный шаг на пути к рождению Геостационарной орбиты был сделан в октябре 1945 года, когда научный фантаст Артур Чарльз Кларк написал серьёзную статью для Wireless World – ведущего британского издания в области радио и электроники. Статья была озаглавлена как «Внеземная релейная связь: смогут ли космические ракеты обеспечить охват сигналом всего мира?».

Кларк попытался экстраполировать то, что уже было возможно благодаря использованию существующих на тот момент ракетных технологий, разработанных немецкими учёными, на то, что могло бы стать возможным в будущем. Он высказал мысль о возможности покрытия сигналом всей Земли при использовании всего трёх геостационарных спутников.

В своей статье Кларк указал необходимые характеристики орбиты, а также уровни мощности передатчиков, возможности выработки электроэнергии при помощи солнечных батарей и даже рассчитал возможное влияние солнечных затмений.

Статья Кларка значительно опережала время. Лишь в 1963 году агентство NASA смогло запустить в космос спутники, способные проверить данную теорию на практике. Первым полноценным спутником, способным начать практические испытания теории Кларка, стал спутник Syncom 2, запущенный 26 июля 1963 года (по правде говоря, спутник Syncom 2 не смог этого сделать, поскольку его не удалось доставить на необходимую геостационарную орбиту).

Основы теории Геостационарной орбиты

С увеличением высоты орбиты, на которой находится спутник, увеличивается и период его обращения по данной орбите. На высоте 35 790 километров над Землёй спутнику требуется 24 часа для полного витка вокруг планеты. Такая орбита известна как геосинхронная, так как она синхронизирована с периодом обращения Земли вокруг своей оси.

Частным случаем геосинхронной орбиты является геостационарная орбита. При использовании такой орбиты направление движения спутника вокруг Земли соответствует направлению вращения самой планеты, а период обращения космического аппарата примерно равен 24 часам. Это значит, что спутник вращается с той же угловой скоростью, что и Земля, в том же направлении и, стало быть, постоянно находится в одной и той же точке относительно поверхности планеты.

Читайте также:

Чтобы гарантировать то, что спутник обращается вокруг Земли с той же скоростью, с которой обращается вокруг своей оси сама планета, необходимо чётко уяснить – каков же на самом деле период обращения Земли вокруг своей оси. Большинство хронометражных устройств измеряет обращение Земли относительно текущего положения Солнца, а вращение Земли вокруг своей оси в сочетании с её вращением вокруг Солнца даёт продолжительность дня. Однако это совсем не тот период обращения Земли, который интересует нас с точки зрения расчета геостационарной орбиты – время, необходимое для одного полного обращения. Этот отрезок времени известен как «звёздные сутки», продолжительность которых составляет 23 часа 56 минут и 4 секунды.

Законы геометрии говорят нам о том, что единственный вариант для того, чтобы, делая один виток в сутки, спутник всегда оставался над одной точкой земной поверхности, состоит в его обращении в том же направлении, в котором вращается сама Земля. Кроме того, спутник не должен смещаться на своей орбите ни на север, ни на юг. Всего этого можно достичь лишь в том случае, если орбита спутника проходит над экватором.

На диаграмме показаны различные типы орбит. Поскольку плоскость любой орбиты должна проходить через центр Земли, на рисунке представлены два возможных варианта. При этом даже если обращение космических аппаратов на обеих орбитах будет осуществляться со скоростями, равными скорости вращения Земли вокруг своей оси, орбита, обозначенная как «геосинхронная», будет полдня смещаться на север относительно экватора, а оставшиеся полдня – на юг и, стало быть, не будет стационарной. Для того, чтобы спутник стал стационарным, он должен располагаться над экватором.

Дрейф на геостационарной орбите

Даже если спутник расположен на геостационарной орбите, на него воздействуют некоторые силы, способные медленно изменять его позицию в течение времени.

Такие факторы, как эллиптическая форма Земли, притяжение Солнца и Луны, а также ряд других увеличивают потенциальную возможность отклонения спутника от своей орбиты. В частности, не совсем круглая форма Земли в районе экватора приводит к тому, что спутник притягивает к двум устойчивым точкам равновесия – одна из них находится над Индийским океаном, а вторая – приблизительно на противоположной части Земли. В результате имеет место явление, получившее название либрации с востока на запад, или движение вперёд и назад.

Для того чтобы преодолеть последствия такого движения, на борту спутника имеется определённый запас топлива, который позволяет ему проводить «поддерживающие манёвры», возвращающие аппарат чётко в необходимую орбитальную позицию. Необходимый промежуток между временем проведения таких «поддерживающих манёвров» определяется в соответствии с так называемым допуском отклонения спутника, который устанавливается, главным образом, с учётом ширины луча антенны наземной станции. Это значит, что при нормальной работе спутника не требуется никакой подстройки антенны.

Читайте также:

Очень часто период активной эксплуатации спутника рассчитывается из количества топлива на его борту, необходимого для поддержания расположения спутника в одной орбитальной позиции. Чаще всего этот период составляет несколько лет. После чего спутник начинает дрейфовать в направлении одной из точек равновесия, после чего возможно его снижение и последующее вхождение в атмосферу Земли. Поэтому желательно использовать последнее имеющееся у него на борту топливо для того, чтобы поднять спутник на более высокую орбиту, дабы избежать его возможного негативного воздействия на работу других космических аппаратов.

Покрытие с геостационарной орбиты

Совершенно очевидным является тот факт, что один геостационарный спутник не способен обеспечить полного покрытия сигналом поверхности Земли. Однако, каждый геостационарный спутник «видит» примерно 42% земной поверхности, при этом охват падает по направлению к спутнику, который не может «видеть» поверхность. Это происходит вокруг экватора и также в направлении полярных регионов.

Расположив на геостационарной орбите группировку из трёх равноудалённых друг от друга спутников, можно обеспечить покрытие сигналом всей поверхности Земли от экватора и вплоть до 81° северной и южной широты.

Отсутствие покрытия в полярных регионах не является проблемой для большинства пользователей, однако при необходимости обеспечения стабильного покрытия полярных широт требуется использования спутников, вращающихся на других орбитах.

Геостационарная орбита
и длина пути сигнала

Одной из проблем, возникающих при использовании спутников, находящихся на геостационарной орбите, является задержка сигнала, вызванная расстоянием, которое он вынужден проделывать.

Минимальное расстояние до любого из геостационарных спутников составляет 35790 км. И это лишь в том случае, если пользователь находится непосредственно под спутником, и сигнал попадает к нему по кратчайшему пути. В действительности же пользователь вряд ли будет находиться точно в данной точке, а стало быть расстояние, которое вынужден будет проделать сигнал, в реальности гораздо больше.

Исходя из длины кратчайшего расстояния от наземной станции до спутника, расчётное минимальное время движения сигнала в одну сторону – то есть, с Земли на спутник или со спутника на Землю – составляет примерно 120 миллисекунд. А это значит, что время полного маршрута сигнала – с Земли на спутник и со спутника назад на Землю – составляет примерно четверть секунды.

Таким образом, для того, чтобы получить ответ в процессе диалога, проходящего через спутник, требуется полсекунды, поскольку сигнал должен пройти через спутник дважды: один раз – в движении в направлении удалённого слушателя, а второй раз назад – с ответом. Эта задержка усложняет телефонные разговоры, для проведения которых используется спутниковый канал связи. Репортёру, получившему вопрос из студии вещания, требуется некоторое время на то, чтобы ответить. Наличие такого эффекта задержки стало причиной того, что многие линии дальней связи используют кабельные каналы вместо спутниковых, ибо задержки в кабеле намного меньшие.

Преимущества и недостатки спутников,
расположенных на геостационарной орбите

Несмотря на то, что геостационарная орбита широко используется на практике для развёртывания различных технологий, она всё же подходит не для всех ситуаций. Размышляя над возможным использованием данной орбиты следует учесть целый ряд её преимуществ и недостатков:

Преимущества Недостатки
  • Спутник постоянно находится в одной точке относительно Земли – соответственно, не требуется перенаправление антенн
  • Сигнал проделывает большее расстояние, а стало быть, наблюдаются большие, в сравнении с LEO или MEO, потери.
  • Стоимость доставки и размещения спутника на GEO-орбиту выше – в силу большей высоты над Землёй.
  • Длинное расстояние от Земли до спутника приводит к задержкам сигнала.
  • Геостационарная спутниковая орбита может пролегать исключительно над экватором, в связи с чем отсутствует покрытие полярных широт.

Однако, несмотря на все имеющиеся недостатки геостационарной орбиты, спутники, расположенные на ней, широко используются во всём мире благодаря главному их преимуществу, которое способно перевесить все недостатки: геостационарный спутник всегда находится в одной орбитальной позиции относительно той или иной точки на Земле.

Расчет параметров геостационарной орбиты

При стационарном круговом вращении спутника массой m на него действует сила притяжения Земли (сила тяжести) F и центробежная сила F ц , они уравновешивают друг друга.

где v – скорость космического аппарата (КА), m – масса КА, R з – радиус Земли, h – высота КА над поверхностью Земли.

Сила притяжения Земли из закона всемирного тяготения определяется следующим образом:

где G = 6,6729*10 -11 м 3 кг -1 с -2 – гравитационная постоянная, M – масса Земли, m – масса КА, r = R з +h – расстояние от центра Земли до космического аппарата.

Для расчета главного параметра – радиуса геостационарной орбиты необходимо, чтобы скорость спутника обеспечивала период вращения 24 часа вокруг Земли.

Скорость спутника на круговой орбите зависит от радиуса и периода:

где T = 24 часа

Подставляя v в уравнение F ц = F получаем формулу для расчета высоты геостационарной орбиты:

= 42241752,19 м

h = 35 870 452,1877312 м

Можно определить скорость вращения спутника v= 3071,906906 м/с = 11 058,86486 км/ч.


1. Введение.. 3

1.1. Краткая история. 3

1.3. Телевидение. 5

1.4. Системы навигации.. 5

1.4.2. ГЛОНАСС.. 7

1.4.3. GALILEO.. 8

1.4.4. BeiDou. 8

1.5. Спутниковая телефония. 9

1.6. Аварийно-спасательные системы.. 10

1.8. Использование космического пространства.. 13

1.9. Тенденции развития спутниковых телекоммуникаций.. 14

2. Классификация, способы организации и использования ресурсов систем спутниковых телекоммуникаций.. 17

2.1. Частотный ресурс и его характеристики.. 18

2.2. Способ использования частотного ресурса.. 19

2.3. Способы организации канала связи.. 19

2.4. Характеристики космического сегмента.. 20

3. Оборудование систем спутниковых телекоммуникаций 27

3.1. Спутниковые антенны.. 28

3.1.1. Классификация спутниковых антенн. 28

3.1.2. Упрощенный расчет диаметра параболической приемной антенны 33

3.1.3. Методика расчета азимутального подвеса. 36

3.1.4. Полярный подвес спутниковой антенны и его методика расчета 39

3.1.5. Расчет видимости спутников в данной местности. 44

3.1.6. Расчет поворота плоскости поляризации. 44

3.1.7. Способы улучшения эксплуатационных характеристик спутниковых антенн 45

3.2. Устройства позиционирования. 46

3.3. Коммуникационное оборудование. 47

3.3.1. Конверторы спутниковых приемных устройств. 48

3.3.2. Спутниковые ресиверы (приемники) 52

3.3.3. Компьютерные карты.. 53

3.3.4. Переключатели. 54

4. Стандарты управления антенными системи и другим коммуникационным оборудованием... 56



Понравилась статья? Поделиться с друзьями: