Как работает жесткий диск компьютера. Жесткий диск: принцип работы и основные характеристики

Жёсткий диск (HDD) – энергонезависимое запоминающее устройство, назначение которого длительное хранение данных. Информация сохраняется на жестких носителях (дисках из специальных сплавов) имеющих ферромагнитное покрытие (двуокись хрома).

Устройство жесткого диска.

Гермозона

Включает в себя: корпус из прочного сплава, диски с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок

Пакет рычагов из пружинистой стали с закрепленными головками на концах.

Пластины

Изготовлены из металлического сплава и покрыты напылением ферромагнетика (окислов железа, марганца и других металлов). Диски жёстко закреплены на шпинделе, который вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности диска создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности диска.


Устройство позиционирования головок

Состоит из неподвижной пары сильных постоянных магнитов, а также катушки на подвижном блоке головок.

Гермозона - заполняется очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливается тонкая металлическая или пластиковая мембрана. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы. Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.



Блок электроники

Содержит: управляющий блок, постоянное запоминающее устройство, буферную память, интерфейсный блок (передача данных, подача питания) и блок цифровой обработки сигнала.

Блок управления представляет собой систему:

  • позиционирования головок;
  • управления приводом;
  • коммутации информационных потоков с различных головок;
  • управления работой всех остальных узлов - приёма и обработки сигналов с датчиков устройства:
    • одноосный акселерометр - используемый в качестве датчика удара,
    • трёхосный акселерометр - используемый в качестве датчика свободного падения,
    • датчик давления,
    • датчик угловых ускорений,
    • датчик температуры.

Блок постоянного запоминающего устройства хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию жесткого диска.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память).

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации).

Характеристики жесткого диска.

Интерфейс — поддерживаемый стандарт обмена данными с накопителями информации: .

Ёмкость — объём данных, которые может хранить жесткий диск (ГБ, ТБ).

Форм-фактор — физический размер диска с ферромагнитным покрытием: 3,5 или 2,5 дюйма.

Время доступа — время, за которое жесткий диск гарантированно выполнит операцию чтения или записи на любом участке магнитного диска (диапазон от 2,5 до 16 мс).

Скорость вращения шпинделя – параметр от которого зависит время доступа и средняя скорость передачи данных. Жесткие диски для ноутбуков имеют скорость вращения 4200, 5400 и 7200 оборотов в минуту, а для стационарных компьютеров 5400, 7200 и 10 000 об/мин.

Ввод-вывод — количество операций ввода-вывода в секунду. Обычно жесткий диск производит около 50 операций в секунду при произвольном доступе и около 100 при последовательном.

Потребление энергии — потребляемая мощность в Ваттах, важный фактор для мобильных устройств.

Уровень шума – шум в децибелах, который создает механика жесткого диска при его работе (вращение шпинделя, аэродинамика, позиционирование). Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже.

Ударостойкость — сопротивляемость накопителя резким скачкам давления или ударам. Измеряется в единицах допустимой перегрузки (G) во включённом и выключенном состоянии.

Скорость передачи данных – скорость чтения/записи при последовательном доступе (внутренняя зона диска - от 44,2 до 74,5 Мб/с, внешняя зона диска - от 60,0 до 111,4 Мб/с).

Объём буфера — промежуточная память (Мб), предназначенная для сглаживания разницы скорости чтения/записи и передачи по интерфейсу. Обычно варьируется от 8 до 64 Мб.

Видео на тему: «Жесткий диск: устройство и характеристики»

Во время запуска компьютера, набор микропрограмм, записанных в микросхеме BIOS, производит проверку оборудования. Если все в порядке, он передает управление загрузчику операционной системы. Дальше ОС загружается и вы начинаете пользоваться компьютером. При этом — где до включения компьютера хранилась операционная система? Каким образом ваш реферат, который вы писали всю ночь, остался цел после отключения питания ПК? Снова же — где он хранится?

Ладно, вероятно я слишком загнул и вы все прекрасно знаете, что данные компьютера хранятся на жестком диске. Тем не менее что он из себя представляет и как работает не все знают, и поскольку вы здесь, делаем вывод, что хотели бы узнать. Что же, давайте разбираться!

Что такое жесткий диск

По традиции, давайте подсмотрим определение жесткого диска в Википедии:

Жесткий диск (винт, винчестер, накопитель на жестких магнитных дисках, НЖМД, HDD, HMDD) — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.

Используются в подавляющем большинстве компьютеров, а также как отдельно подключаемые устройства для хранения резервных копий данных, в качестве файлового хранилища и т.п.

Чуть-чуть разберемся. Мне нравится термин «накопитель на жестких магнитных дисках «. Эти пять слов передают всю суть. HDD — устройство, предназначение которого длительное время хранить записанные на него данные. Основой HDD являются жесткие (алюминиевые) диски со специальным покрытием, на которое при помощи специальных головок записывается информация.

Не буду рассматривать в деталях сам процесс записи — по сути это физика последних классов школы, и вникать в это, уверен, у вас желания нет, да и статья совсем не о том.

Также обратим внимание на фразу: «произвольного доступа » что, грубо говоря, означает, что мы (компьютер) можем в любое время считать информацию с любого участка ЖД.

Важным является тот факт, что память HDD не энергозависима, то есть не важно подключено питание или нет, записанная на устройство информация никуда не исчезнет. Это важное отличие постоянной памяти компьютера, от временной ().

Взглянув на жесткий диск компьютера в жизни, вы не увидите ни дисков, ни головок, так как все это скрыто в герметичном корпусе (гермозона). Внешне винчестер выглядит так:

Для чего компьютеру нужен жесткий диск

Рассмотрим что такое HDD в компьютере, то есть какую роль он играет в ПК. Понятно, что он хранит данные но, как и какие. Здесь выделим такие функции НЖМД:

  • Хранение ОС, пользовательского ПО и их настроек;
  • Хранение файлов пользователя: музыка, видео, изображения, документы и т.д;
  • Использование части объема жесткого диска, для хранения данных не помещающихся в ОЗУ (файл подкачки) или хранение содержимого оперативной памяти во время использования режима сна;

Как видим, жесткий диск компьютера не просто свалка из фотографий, музыки и видео. На нем хранится вся операционная система, и помимо этого ЖД помогает справляться с загруженностью ОЗУ, беря на себя часть ее функций.

Из чего состоит жесткий диск

Мы частично упоминали о составных жесткого диска, сейчас разберемся с этим детальнее. Итак, основные составляющие HDD:

  • Корпус — защищает механизмы жесткого диска от пыли и влаги. Как правило, является герметичным, дабы внутрь та самая влага и пыль не попадали;
  • Диски (блины) — пластины из определенного сплава металлов, с нанесенным с обеих сторон покрытием, на которое и записываются данные. Количество пластин может быть разным — от одной (в бюджетных вариантах), до нескольких;
  • Двигатель — на шпинделе которого закреплены блины;
  • Блок головок — конструкция из соединенных между собой рычагов (коромысел), и головок. Часть ЖД, которая считывает и записывает на него информацию. Для одного блина используется пара головок, поскольку и верхняя, и нижняя часть у него рабочая;
  • Устройство позиционирования (актуатор ) — механизм приводящий в действие блок головок. Состоит из пары постоянных неодимовых магнитов и катушки, находящейся на конце блока головок;
  • Контроллер — электронная микросхема управляющая работой HDD;
  • Парковочная зона — место внутри винчестера рядом с дисками либо на их внутренней части, куда опускаются (паркуются) головки во время простоя, чтобы не повредить рабочую поверхность блинов.

Такое вот незамысловатое устройство жесткого диска. Сформировалось оно много лет назад, и никаких принципиальных изменений в него уже давно не вносились. А мы идем дальше.

Как работает жесткий диск

После того, как на HDD подается питание двигатель, на шпинделе которого закреплены блины, начинает раскручиваться. Набрав скорость, при которой у поверхности дисков образовывается постоянный поток воздуха, начинают двигаться головки.

Данная последовательность (сначала раскручиваться диски, а затем начинают работать головки) необходима для того, чтобы за счет образовавшегося потока воздуха, головки парили над пластинами. Да, они никогда не касаются поверхности дисков, иначе последние были бы моментально повреждены. Тем не менее, расстояние от поверхности магнитных пластин до головок настолько маленькое (~10 нм), что вы не увидите его невооруженным глазом.

После запуска, в первую очередь происходит считывание служебной информации о состоянии жесткого диска и других необходимых сведениях о нем, находящихся на так называемой нулевой дорожке. Только затем начинается работа с данными.

Информация на жестком диске компьютера записывается на дорожки которые, в свою очередь, разбиты на сектора (такая себе разрезанная на кусочки пицца). Для записи файлов несколько секторов объединяют в кластер, он и является наименьшим местом, куда может быть записан файл.

Кроме такого «горизонтального» разбиения диска, есть еще условное «вертикальное». Поскольку все головки объединены, они всегда позиционируются над одной и той же по номеру дорожкой, каждая над своим диском. Таким образом, во время работы HDD головки как бы рисуют цилиндр:

Пока HDD работает, по сути он выполняет две команды: чтение и запись. Когда необходимо выполнить команду записи, происходит вычисление области на диске куда она будет производится, затем позиционируются головки и, собственно, выполняется команда. Затем результат проверяется. Кроме записи данных прямо на диск, информация также попадает в его кеш.

Если контроллеру поступает команда на чтение, в первую очередь происходит проверка наличия требуемой информации в кеше. Если ее там нет, снова происходит вычисление координат для позиционирования головок, дальше, головки позиционируется и считывают данные.

После завершения работы, когда питание винчестера исчезает, происходит автоматическая парковка головок в парковочных зоне.

Вот так в общих чертах и работает жесткий диск компьютера. В действительности же все намного сложнее, но обычному пользователю, скорее всего, такие подробности не нужны, поэтому закончим с этим разделом и пойдем дальше.

Виды жестких дисков и их производители

На сегодняшний день, на рынке существует фактически три основных производителя жестких дисков: Western Digital (WD), Toshiba, Seagate. Они полностью покрывают спрос на устройства всех видов и требований. Остальные компании либо разорились, либо были поглощены кем-то из основной тройки, или перепрофилировались.

Если говорить о видах HDD, их можно разделить таким образом:

  1. Для ноутбуков — основной параметр — размер устройства в 2,5 дюйма. Это позволяет им компактно размещаться в корпусе лептопа;
  2. Для ПК — в этом случае также возможно использование 2,5″ жестких дисков, но как правило, используются 3,5 дюйма;
  3. Внешние жесткие диски — устройства, отдельно подключаемые к ПК/ноутбуку, чаще всего выполняющие роль файлового хранилища.

Также выделяют особый тип жестких дисков — для серверов. Они идентичны обычным ПКшным, но могут отличаются интерфейсами для подключения, и большей производительностью.

Все остальные разделения HDD на виды происходят от их характеристик, поэтому рассмотрим их.

Характеристики жестких дисков

Итак, основные характеристики жесткого диска компьютера:

  • Объем — показатель максимально возможного количества данных, которые можно будет вместить на диске. Первое на что обычно смотрят при выборе HDD. Данный показатель может достигать 10 Тб, хотя для домашнего ПК чаще выбирают 500 Гб — 1 Тб;
  • Форм-фактор — размер жестокого диска. Самые распространенные — 3,5 и 2,5 дюйма. Как говорилось выше, 2,5″ в большинстве случаев, устанавливаются в ноутбуки. Также их используют во внешних HDD. В ПК и на сервера устанавливают 3,5″. Форм фактор влияет и на объем, так как на больший диск может поместиться больше данных;
  • Скорость вращения шпинделя — с какой скоростью вращаются блины. Наиболее распространены 4200, 5400, 7200 и 10000 об/мин. Эта характеристика напрямую влияет на производительность, а так же и цену устройства. Чем выше скорость — тем больше оба значения;
  • Интерфейс — способ (тип разъема) подключения HDD к компьютеру. Самым популярным интерфейсом для внутренних ЖД сегодня является SATA (в старых компьютерах использовался IDE). Внешние жесткие диски подключаются, как правило, по USB или FireWire. Кроме перечисленных, существуют еще такие интерфейсы как SCSI, SAS;
  • Объем буфера (кеш-память) — тип быстрой памяти (по типу ОЗУ) установленный на контроллере ЖД, предназначенный для временного хранения данных, к которым чаще всего обращаются. Объем буфера может составлять 16, 32 или 64 Мб;
  • Время произвольного доступа — то время, за которое HDD гарантированно выполнить запись или чтение с любого участка диска. Колеблется от 3 до 15 мс;

Кроме приведенных характеристик также можно встретить такие показатели как.

Многих пользователей интересует устройство жесткого диска. И неспроста, ведь на сегодняшний день самым распространенным накопителем информации на компьютере является HDD. Далее будут разобраны принципы его работы и структура.


Винчестер по своей сути напоминает проигрыватель на пластинках. В нем также содержатся пластинки и считывающие головки. Однако устройство HDD сложнее. Если мы разберем жесткий диск, то увидим, что в основном пластины металлические и покрыты магнитным слоем. Именно на него производится запись данных. В зависимости от объема винчестера пластин от 4 до 9. Они крепятся на валу, который называется «шпиндель» и имеет высокую скорость вращения от 3600 до 10000 оборотов/мин для изделий массового потребления.

Рядом с блоком пластин находится блок считывающих головок. Количество головок определяется количеством магнитных дисков, а именно по одной на каждую поверхность диска. В отличие от проигрывателя на жестких дисках головка не касается поверхности пластин, а зависает над ней. Это позволяет исключить механический износ. Поскольку пластины имеют высокую скорость вращения, а головки должны находиться на крайне малом постоянном расстоянии над ними, очень важно, чтобы во внутрь корпуса ничего не смогло попасть. Ведь малейшая пылинка может нанести физические повреждения. Именно поэтому механическую часть герметично закрывают кожухом, а электронную выносят на наружу.

Некоторые пользователи интересуются тем, как разобрать жесткий диск. Нужно понимать, что разбор рабочего накопителя предусматривает нарушение его герметичности. А это, в свою очередь, приведет его в негодность. Поэтому не стоит этого делать, если вы не готовы потерять все данные на носителе информации. Если у вас нет острой необходимости открывать накопитель, а всего лишь мучает любопытство, из чего состоит жесткий диск, вы можете посмотреть фото разобранного HDD.

Именно поэтому жесткие диски на магнитных дисках при ремонте разбирают и собирают в специальном ламинарном боксе. В нем при помощи системы подачи воздуха высокой очистки и герметичности поддерживается необходимая для проведения таких работ окружающая среда. Разобрав свой диск в домашних условиях Вы однозначно его приведете в неработоспособное состояние.

Считывающие головки в нерабочем состоянии находятся рядом с блоком пластин. Еще это называется «парковочное положение». Специальное устройство выносит головки в рабочую зону только тогда, когда диск разогнался до необходимой скорости. Все они перемещаются вместе, а не каждая отдельно. Это позволяет иметь быстрый доступ ко всем данным.

Электронная плата, или контроллер, как правило, крепится снизу винчестера. Ее ничего не защищает, и от этого она достаточно уязвима для механических и термических повреждений. Именно она осуществляет управление механикой. Винчестер от ноутбука отличается от стандартного 3,5-дюймового только размером. Принцип работы жесткого диска точно такой же. Отличаться они могут только количеством магнитных блинов и емкостью накопителя.

Как можно проследить, устройство жесткого диска подвержено ударам, встряскам, царапинам, значительным изменениям температур и скачкам напряжения. А это делает его не совсем надежным носителем информации. Именно из-за этого жесткий диск на ноутбуке выходит из строя чаще, чем на стационарном ПК. Ведь портативные устройства постоянно подвергают встряскам, порой падениям, выносят на холод или ставят на солнце. А это, в свою очередь, негативно сказывается на винчестере.

Чтобы продлить срок работы HDD, не подвергайте его падениям и ударам, следите за тем, чтобы была достаточная вентиляция корпуса, любые манипуляции с диском производите только при отключенном питании. Эти недостатки привели к появлению нового типа винчестеров SSD. Постепенно они теснят HDD, когда-то выглядевших великолепными носителями.

Логическое устройство


Мы узнали, как выглядит жесткий диск внутри. Теперь будем разбирать его логическое структурирование. Данные пишутся на жесткий диск компьютера на дорожки, которые делятся на определенные сектора. Объем каждого сектора составляет 512 байт. Последовательные сектора объединяются в кластер.

При установке нового HDD нужно произвести форматирование, иначе компьютер попросту не увидит свободное место на накопителе. Форматирование бывает физическое и логическое. Первое подразумевает разбивку диска на сектора. Некоторые из них могут определиться как «плохие», то есть непригодные к записи данных. В большинстве случаев накопитель уже имеет такое форматирование перед продажей.

Логическое форматирование подразумевает создание логического раздела жесткого диска. Это позволяет значительно упростить и оптимизировать работу с информацией. Под логический раздел (или, как еще называют, «логический диск») отводится определенная область накопителя. С ней можно работать как с отдельным винчестером. Чтобы понять, как работает жесткий диск со своими разделами, достаточно визуально разделить винчестер на 2-4 части в зависимости от количества логических томов. К каждому тому можно применить свою систему форматирования: FAT32, NTFS или exFAT.

Технические данные


Друг от друга HDD отличаются по таким данным:

  • объемом;
  • скоростью вращения шпинделя;
  • интерфейсом.

На сегодняшний день средний объем винчестера 500-1000 Гб. Он определяет количество информации, которое вы можете записать на носитель. От скорости вращения шпинделя будет зависеть, как быстро вы сможете иметь доступ к данным, то есть чтение и запись информации. Самым распространенным интерфейсом является SATA, который пришел на смену уже морально устаревшему и медленному IDE. Друг от друга они отличаются пропускной способностью и типом разъема подключения к материнской плате. Отметим, что диск современного ноутбука может иметь только интерфейс SATA или SATA2.

В данной статье было рассмотрено, как устроен жесткий диск, его принципы работы, техданные и логическая структура.

Приветствую всех читателей блога . Многих интересует вопрос - как устроен жесткий диск компьютера. Поэтому я решил посвятить этому сегодняшнюю статью.

Жесткий диск компьютера (HDD или винчестер) нужен для хранения информации после выключения компьютера, в отличие от ОЗУ () - которая хранит информацию до момента прекращения подачи питания (до выключения компьютера).

Жесткий диск, по-праву, можно назвать настоящим произведением искусства, только инженерным. Да-да, именно так. Настолько сложно там внутри все устроено. На данный момент во всем мире жесткий диск - это самое популярное устройство для хранения информации, он стоит в одном ряду с такими устройствами, как: флеш-память (флешки), SSD. Многие наслышаны о сложности устройства жесткого диска и недоумевают, как в нем помещается так много информации, а поэтому хотели бы узнать, как устроен или из чего состоит жесткий диск компьютера. Сегодня будет такая возможность).

Жесткий диск состоит из пяти основных частей. И первая из них - интегральная схема , которая синхронизирует работу диска с компьютером и управляет всеми процессами.

Вторая часть - электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.

А теперь третья, наверное самая важная часть - коромысло , которое может как записывать, так и считывать информацию. Конец коромысла обычно разделен, для того чтобы можно было работать сразу с несколькими дисками. Однако головка коромысла никогда не соприкасается с дисками. Существует зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!

Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска. Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением - становится невероятно тяжелым. Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Естественно, что повреждение диска в таком случае неизбежно. Кстати, вот что случилось с диском, у которого этот зазор по каким то причинам исчез:

Так же важна роль силы трения, т.е. ее практически полного отсутствия, когда коромысло начинает считывать информацию, при этом смещаясь до 60 раз за секунду. Но постойте, где же здесь находится двигатель, что приводит в движение коромысло, да еще с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма. Такое взаимодействия позволяет разгонять коромысло до скоростей света, в прямом смысле.

Четвертая часть - сам жесткий диск, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.

Ну и пятая, завершающая часть конструкции жесткого диска - это конечно же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют "гермозоной". Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там - вакуум. Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету - а есть очищенный, осушенный воздух или нейтральный газ - азот например. Хотя, возможно в более ранних версиях жестких дисков, вместо того, чтобы очищать воздух - его просто откачивали.

Это мы говорили про компоненты, т.е. из чего состоит жесткий диск . Теперь давайте поговорим про хранение данных.

Как и в каком виде хранятся данные на жестком диске компьютера

Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.

Карты дорожек и секторов позволяют определить, куда записать или где считать информацию. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов жесткого диска, размещена не внутри корпуса, а снаружи и обычно снизу.

Сама поверхность диска - гладкая и блестящая, но это только на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Этот слой как раз и делает всю работу. Ферромагнитный слой запоминает всю информацию, как? Очень просто. Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами. Таким образом, любая информация, записанная на жестком диске, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. Например, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам. Да, звучит впечатляюще, однако в действительности - такое огромное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности жесткого диска включает в себя несколько десятков миллиардов битов.

Принцип работы жесткого диска

Мы только что с вами рассмотрели устройство жесткого диска, каждый его компонент по отдельности. Теперь предлагаю связать все в некую систему, благодаря чему будет понятен сам принцип работы жесткого диска.

Итак, принцип, по которому работает жесткий диск следующий: когда жесткий диск включается в работу - это значит либо на него осуществляется запись, либо с него идет чтение информации, или с него , электромотор (шпиндель) начинает набирать обороты, а поскольку жесткие диски закреплены на самом шпинделе, соответственно они вместе с ним тоже начинают вращаться. И пока обороты диска(ов) не достигли того уровня, чтобы между головкой коромысла и диском образовалась воздушная подушка, коромысло во избежание повреждений находится в специальной "парковочной зоне". Вот как это выглядит.

Как только обороты достигают нужного уровня, сервопривод (электромагнитный двигатель) приводит в движение коромысло, которое уже позиционируется в то место, куда нужно записать или откуда считать информацию. Этому как раз способствует интегральная микросхема, которая управляет всеми движениями коромысла.

Распространено мнение, этакий миф, что в моменты времени, когда диск "простаивает", т.е. с ним временно не осуществляется никаких операций чтения/записи, жесткие диски внутри перестают вращаться. Это действительно миф, ибо на самом деле, жесткие диски внутри корпуса вращаются постоянно, даже тогда, когда винчестер находится в энергосберегающем режиме и на него ничего не записывается.

Ну вот мы и рассмотрели с вами устройство жесткого диска компьютера во всех подробностях. Конечно же, в рамках одной статьи, нельзя рассказать обо всем, что касается жестких дисков. Например в этой статье не было сказано про - это большая тема, я решил написать про это отдельную статью.

Нашел интересное видео, про то, как работает жесткий диск в разных режимах

Всем спасибо за внимание, если вы еще не подписаны на обновления этого сайта - очень рекомендую это сделать, дабы не пропустить интересные и полезные материалы. До встречи на страницах блога!

Жесткие диски

Выполнил студент
группы 40-101Б.
Каримов К.Р.
Преподаватель:
Усов П.А.

1. Принцип работы жесткого диска.. 3

2. Устройство диска.. 5

3. Работа жесткого диска.. 10

4. Объем, скорость и время доступа.. 12

5. Интерфейсы жестких дисков.. 14

6. Внешние жесткие диски.. 16

Принцип работы жесткого диска

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин (у некоторых моделей она доходит до 15000 оборотов в минуту) постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферромагнитным слоем. Диски изготовлены. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей. Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Устройство диска

Типовой винчестер состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате - вся управляющая электроника, за исключением предусилителя, размещенного внутри гермоблока в непосредственной близости от головок.

Под дисками расположен двигатель - плоский, как во floppy-дисководах, или встроенный в шпиндель дискового пакета. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока и постоянно очищается фильтром, установленным на одной из его сторон.

Ближе к разъемам, с левой или правой стороны от шпинделя, находится поворотный позиционер, несколько напоминающий по виду башенный кран: с одной стороны оси, находятся обращенные к дискам тонкие, длинные и легкие несущие магнитных головок, а с другой - короткий и более массивный хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков. Угол между осями позиционера и шпинделя подобран вместе с расстоянием от оси позиционера до головок так, чтобы ось головки при поворотах как можно меньше отклонялась от касательной дорожки.

В более ранних моделях коромысло было закреплено на оси шагового двигателя, и расстояние между дорожками определялось величиной шага. В современных моделях используется так называемый линейный двигатель, который не имеет какой-либо дискретности, а установка на дорожку производится по сигналам, записанным на дисках, что дает значительное увеличение точности привода и плотности записи на дисках.

Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением; динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение. Такая система привода получила название Voice Coil (звуковая катушка) - по аналогии с диффузором громкоговорителя.

На хвостовике обычно расположена так называемая магнитная защелка - маленький постоянный магнит, который при крайнем внутреннем положении головок (landing zone - посадочная зона) притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В ряде дорогих моделей (обычно SCSI) для фиксации позиционера предусмотрен специальный электромагнит, якорь которого в свободном положении блокирует движение коромысла. В посадочной зоне дисков информация не записывается.

В оставшемся свободном пространстве размещен предусилитель сигнала, снятого с головок, и их коммутатор. Позиционер соединен с платой предусилителя гибким ленточным кабелем, однако в отдельных винчестерах (в частности - некоторые модели Maxtor AV) питание обмотки подведено отдельными одножильными проводами, которые имеют тенденцию ломаться при активной работе. Гермоблок заполнен обычным обеспыленным воздухом под атмосферным давлением. В крышках гермоблоков некоторых винчестеров специально делаются небольшие окна, заклеенные тонкой пленкой, которые служат для выравнивания давления внутри и снаружи. В ряде моделей окно закрывается воздухопроницаемым фильтром. У одних моделей винчестеров оси шпинделя и позиционера закреплены только в одном месте - на корпусе винчестера, у других они дополнительно крепятся винтами к крышке гермоблока. Вторые модели более чувствительны к микродеформации при креплении - достаточно сильной затяжки крепежных винтов, чтобы возник недопустимый перекос осей. В ряде случаев такой перекос может стать труднообратимым или необратимым совсем. Плата электроники - съемная, подключается к гермоблоку через один - два разъема различной конструкции. На плате расположены основной процессор винчестера, ПЗУ с программой, рабочее ОЗУ, которое обычно используется и в качестве дискового буфера, цифровой сигнальный процессор (DSP) для подготовки записываемых и обработки считанных сигналов, и интерфейсная логика. На одних винчестерах программа процессора полностью хранится в ПЗУ, на других определенная ее часть записана в служебной области диска. На диске также могут быть записаны параметры накопителя (модель, серийный номер и т.п.). Некоторые винчестеры хранят эту информацию в электрически репрограммируемом ПЗУ (EEPROM).

Многие винчестеры имеют на плате электроники специальный технологический интерфейс с разъемом, через который при помощи стендового оборудования можно выполнять различные сервисные операции с накопителем - тестирование, форматирование, переназначение дефектных участков и т.п. У современных накопителей марки Conner технологический интерфейс выполнен в стандарте последовательного интерфейса, что позволяет подключать его через адаптер к алфавитно-цифровому терминалу или COM-порту компьютера. В ПЗУ записана так называемая тест-мониторная система (ТМОС), которая воспринимает команды, подаваемые с терминала, выполняет их и выводит результаты обратно на терминал. Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитными поверхностями; первоначальная разметка (форматирование) производилась потребителем по его усмотрению, и могла быть выполнена любое количество раз. Для современных моделей разметка производится в процессе изготовления; при этом на диски записывается сервоинформация - специальные метки, необходимые для стабилизации скорости вращения, поиска секторов и слежения за положением головок на поверхностях. Не так давно для записи сервоинформации использовалась отдельная поверхность (dedicated - выделенная), по которой настраивались головки всех остальных поверхностей. Такая система требовала высокой жесткости крепления головок, чтобы между ними не возникало расхождений после начальной разметки. Ныне сервоинформация записывается в промежутках между секторами (embedded - встроенная), что позволяет увеличить полезную емкость пакета и снять ограничение на жесткость подвижной системы. В некоторых современных моделях применяется комбинированная система слежения - встроенная сервоинформация в сочетании с выделенной поверхностью; при этом грубая настройка выполняется по выделенной поверхности, а точная - по встроенным меткам.

Поскольку сервоинформация представляет собой опорную разметку диска, контроллер винчестера не в состоянии самостоятельно восстановить ее в случае порчи. При программном форматировании такого винчестера возможна только перезапись заголовков и контрольных сумм секторов данных.

При начальной разметке и тестировании современного винчестера на заводе почти всегда обнаруживаются дефектные сектора, которые заносятся в специальную таблицу переназначения. При обычной работе контроллер винчестера подменяет эти сектора резервными, которые специально оставля- ются для этой цели на каждой дорожке, группе дорожек или выделенной зоне диска. Благодаря этому новый винчестер создает видимость полного отсутствия дефектов поверхности, хотя на самом деле они есть почти всегда.

При включении питания процессор винчестера выполняет тестирование электроники, после чего выдает команду включения шпиндельного двигателя. При достижении некоторой критической скорости вращения плотность увлекаемого поверхностями дисков воздуха становится достаточной для преодоления силы прижима головок к поверхности и поднятия их на высоту от долей до единиц микрон над поверхностями дисков - головки "всплывают". С этого момента и до снижения скорости ниже критической головки "висят" на воздушной подушке и совершенно не касаются поверхностей дисков.

После достижения дисками скорости вращения, близкой к номинальной (обычно - 3600, 4500, 5400 или 7200 об/мин) головки выводятся из зоны парковки и начинается поиск сервометок для точной стабилизации скорости вращения. Затем выполняется считывание информации из служебной зоны - в частности, таблицы переназначения дефектных участков.

В завершение инициализации выполняется тестирование позиционера путем перебора заданной последовательности дорожек - если оно проходит успешно, процессор выставляет на интерфейс признак готовности и переходит в режим работы по интерфейсу.

Во время работы постоянно работает система слежения за положением головки на диске: из непрерывно считываемого сигнала выделяется сигнал рассогласования, который подается в схему обратной связи, управляющую током обмотки позиционера. В результате отклонения головки от центра дорожки в обмотке возникает сигнал, стремящийся вернуть ее на место.

Для согласования скоростей потоков данных - на уровне считывания/записи и внешнего интерфейса - винчестеры имеют промежуточный буфер, часто ошибочно называемый кэшем, объемом обычно в несколько десятков или сотен килобайт. В ряде моделей (например, Quantum) буфер размещается в общем рабочем ОЗУ, куда вначале загружается оверлейная часть микропрограммы управления, отчего действительный объем буфера получается меньшим, чем полный объем ОЗУ (80-90 кб при ОЗУ 128 кб у Quantum). У других моделей (Conner, Caviar) ОЗУ буфера и процессора сделаны раздельными.

При отключении питания процессор, используя энергию, оставшуюся в конденсаторах платы либо извлекая ее из обмоток двигателя, который при этом работает как генератор, выдает команду на установку позиционера в парковочное положение, которая успевает выполниться до снижения скорости вращения ниже критической. В некоторых винчестерах (Quantum) этому способствует помещенное между дисками подпружиненное коромысло, постоянно испытывающее давление воздуха. При ослаблении воздушного потока коромысло дополнительно толкает позиционер в парковочное положение, где тот фиксируется защелкой. Движению головок в сторону шпинделя способствует также центростремительная сила, возникающая из-за вращения дисков.

Работа жесткого диска

Теперь - собственно о процессе работы винчестера. После начальной настройки электроники и механики микрокомпьютер винчестера переходит в режим ожидания команд от контроллера, расположенного на системной плате или интерфейсной карте. Получив команду, он включает нужную головку, по сервоимпульсам отыскивает нужную дорожку, дожидается, пока до головки "доедет" нужный сектор, и выполняет считывание или запись информации. Если контроллер запросил чтение/запись не одного сектора, а нескольких - винчестер может работать в так называемом блочном режиме, используя ОЗУ в качестве буфера и совмещая чтение/запись с передачей информации к контроллеру или от него.

Для оптимального использования поверхности дисков применяется так называемая зоновая запись (Zoned Bit Recording - ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и информационную емкость), информация записывается с большей плотностью, чем на внутренних. Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому файлы, расположенные ближе к "началу" винчестера, в целом будут обрабатываться быстрее файлов, расположенных ближе к его "концу".

Теперь о том, откуда берутся неправдоподобно большие количества головок, указанные в параметрах винчестеров. Когда-то эти числа - число цилиндров, головок и секторов на дороже - действительно обозначали реальные физические параметры (геометрию) винчестера. Однако при использовании ZBR количество секторов меняется от дорожки к дорожке, и для каждого винчестера эти числа различны - поэтому стала использоваться так называемая логическая геометрия, когда винчестер сообщает контроллеру некие условные параметры, а при получении команд сам преобразует логические адреса в физические. При этом в винчестере с логической геометрией, например, в 520 цилиндров, 128 головок и 63 сектора (общий объем - 2 Гб) находится, скорее всего, два диска - и четыре головки чтения/записи.

В винчестерах последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood - максимальное правдоподобие при неполном отклике) и S.M.A.R.T. (Self Monitoring Analysis and Report Technology - технология самостоятельного следящего анализа и отчетности). Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска - уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов, и на основании максимальной похожести делается заключение о приеме того или иного кодового слова - примерно так же мы читаем слова, в которых пропущены или искажены буквы.

Винчестер, в котором реализована технология S.M.A.R.T., ведет статистику своих рабочих параметров (количество старт/стопов и наработанных часов, время разгона шпинделя, обнаруженные/исправленные ошибки и т.п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или в служебных зонах диска. Эта информация накапливается в течение всей жизни винчестера и может быть в любой момент затребована программами анализа; по ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.


Похожая информация.




Понравилась статья? Поделиться с друзьями: