График функции одной переменной представляет собой. Функция одной переменной и её характеристики

Основные определения и понятия

Одним из основных понятий математики является число. Числа целые и дробные, как положительные, так и отрицательные, вместе с числом ноль называются рациональными числами. Рациональные числа могут быть представлены в виде конечных или бесконечных периодических дробей. Числа, которые представляются в виде бесконечных, но непериодических дробей, называются иррациональными .

Совокупность всех рациональных и иррациональных чисел называется множеством действительных , или вещественных чисел. Действительные числа можно изображать точками числовой оси. Числовой осью называется бесконечная прямая, на которой выбраны:

1) некоторая точка О, называемая началом отсчёта;

2) положительное направление, указываемое стрелкой;

3) масштаб для измерения длин.

Между всеми действительными числами и всеми точками числовой оси существует взаимно-однозначное соответствие , т.е. каждому действительному числу соответствует точка числовой оси и наоборот.

Абсолютной величиной (или модулем ) действительного числа x называется неотрицательное действительное число Рx Р, определяемое следующим образом: Рx Р = x , если x ? 0, и Рx Р = -x , если x < 0.

Переменной величиной называется величина, которая принимает различные численные значения. Величина, численные значения которой не меняются, называется постоянной величиной.

упорядоченной , если известна область её изменения и про каждое из двух любых её значений можно сказать, какое из них предыдущее и какое последующее. Частным случаем такой величины является числовая последовательность

Переменная величина называется возрастающей (убывающей ), если каждое её последующее значение больше (меньше) предыдущего. Возрастающие и убывающие переменные величины называются монотонными . Переменная величина называется ограниченной , если существует такое постоянное число M > 0, что все последующие значения переменной, начиная с некоторого, удовлетворяют условию:

M ? x ? M, т.е. Рx Р? M.

Переменная величина y называется (однозначной) функцией переменной величины x, если каждому значению переменной величины x, принадлежащему множеству действительных чисел X, соответствует одно определённое действительное значение переменной величины y .

Переменная x называется в этом случае аргументом , или независимой переменной , а множество X - областью определения функции.

Запись y = f(x) означает, что y является функцией x . Значение функции f(x) при x = a обозначают через f(a).

Область определения функции в простейших случаях представляет собой: интервал (открытый промежуток ) (a, b ), т.е. совокупность значений x , удовлетворяющих условию a < x < b ; сегмент (отрезок или замкнутый промежуток ) , т.е. совокупность значений x , удовлетворяющих условию a ? x ? b ; полуинтервал (т.е. a < x ? b ) или (т.е. a ? x < b ); бесконечный интервал (a, + ?) (т.е. a < x < + ?) или (- ?, b ) (т.е. - ? < x < b ) или (- ?, + ?) (т.е. - ? < x < + ?); совокупность нескольких интервалов или сегментов и т. п.

Графиком функции y = f(x) называется геометрическое место точек плоскости xOy, координаты которых удовлетворяют уравнению y = f(x).

Функция f(x) называется чётной, если для любого значения x . График чётной функции расположен симметрично относительно оси ординат. Функция f(x) называется нечётной , если для любого значения x . График нечётной функции расположен симметрично относительно начала координат.

Функция f(x) называется периодической , если существует такое положительное число T, называемое периодом функции, что для любого значения x выполняется равенство.

Наименьшим же периодом функции называется наименьшее положительное число?, для которого f(x + ?) = f(x) при любом x . Следует иметь в виду, что f(x + k?) = f(x) , где k - любое целое число.

Функции задаются:

1) аналитически (в виде формулы), например, ;

2) графически (в виде графика);

3) таблично (в виде таблицы), например таблица логарифмов.

Основными элементарными функциями являются следующие, аналитически заданные функции:

1. Степенная функция : , где? - действительное число.

2. Показательная функция : , где a > 0, a ? 1.

3. Логарифмическая функция : , где a > 0, a ? 1.

4. Тригонометрические функции : y = sin x, y = cos x, y = tg x, y = ctg x ,

y = sec x, y = cosec x.

5. Обратные тригонометрические функции :

y = arcsin x, y = arccos x, y = arctg x, y = arcctg x, y = arcsec x ,

y = arccosec x .

Если y является функцией от u , а u есть функция от x , то y также зависит от x . Пусть y = F(u ), u = ?(x ). Тогда y = F(?(x )). Последняя функция называется функцией от функции , или сложной функцией. Например, y = sin u , u = . Функция y = sin () есть сложная функция от x .

Элементарной функцией называется функция, которая может быть задана одной формулой вида y = f(x) , где выражение f(x) составлено из основных элементарных функций и постоянных при помощи конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

Например, y = Рx Р = ; ; .

Пример 1 . Найти, если.

Решение . Найдём значения данной функции при x = a и x = b :

Тогда получим

Пример 2 . Определить, какая из данных функций чётная или нечётная:

Решение . а) Так как, то

т.е. f(- x) = - f(x). Следовательно, функция нечётная.

б) Имеем, т.е.

f(- x) = f(x). Следовательно, функция чётная.

в) Здесь,т.е.

f(- x) = f(x). Следовательно, функция чётная.

г) Здесь. Таким образом, функция не является ни чётной, ни нечётной.

Пример 3

Решение . Функция определена, если 2x - 1 ? 0, т.е. если. Таким образом, областью определения функции является совокупность двух интервалов:

Пример 4 . Найти область определения функции.

Решение . Функция определена, если x - 1 ? 0 и 1+ x > 0, т.е. если x ? 1 и x > - 1. Область определения функции есть совокупность двух интервалов: (- 1, 1) и (1, + ?).

Пример 5. Найти область определения функции

Решение. Первое слагаемое принимает вещественные значения при 1 -2x ? 0, а второе при. Таким образом, для нахождения области определения заданной функции необходимо решить систему неравенств: Получаем

Следовательно, областью определения будет сегмент

Рассмотрим два числовых множества X и Y . Правило f , по которому каждому числу хI Х ставится в соответствие единственное число yI Y , называется числовой функцией , заданной на множестве Х и принимающей значения во множестве Y .

Таким образом, задать функцию, значит задать три объекта:

1) множество Х (область определения функции);

2) множество Y (область значений функции);

3) правило соответствия f (сама функция).

Например, поставим в соответствие каждому числу его куб. Математически это можно записать формулой y=x 3 . В этом случае правило f есть возведение числа х в третью степень. В общем случае, если каждому х по правилу f соответствует единственный y , пишут y = f(x). Здесь "х " называют независимой переменной или аргументом , а "y " -зависимой переменной (т.к. выражение типа x 3 само по себе не имеет определенного числового значения пока не указано значение х ) или функцией от х . О величинах х и y говорят, что они связаны функциональной зависимостью. Зная все значения х и правило f можно найти все значения у . Например, если х=2 , то функция f(x) =x 3 принимает значение у= f(2) =2 3 =8 .

Существуют несколько способов задания функции.

Аналитический способ. Функция f задается в виде формулы y=f(x). Например, y=3cos(x)+2x 2 . Этот способ является преобладающим в математических исследованиях и подробно рассматривается в классическом курсе математики. В географических исследованиях соответствие между переменными величинами x и y не всегда удается записать в виде формулы. Во многих случаях формула бывает неизвестна. Тогда для выражения функциональной зависимости используются другие способы.

Графический способ. На метеорологических станциях можно наблюдать работу приборов-самописцев, регистрирующих величины атмосферного давления, температуры воздуха, его влажности в любой момент времени суток. По полученному графику можно определить значения указанных величин в любой момент времени. Графиком функции y=f(x) называется множество всех точек плоскости с координатами (x, f(x) ). График содержит всю информацию о функции. Имея перед собой график, мы как бы "видим функцию".

Табличный способ . Этот способ является наиболее простым. В одной строке таблицы записываются все значения аргумента (числа), а в другой – значения f(x) , соответствующие каждому х . Например, зависимость температуры воздуха (Т) от времени суток (t) в определенный день можно представить таблицей.

t 0 1 2 3 4 5 6 7 8 9 10 11
T, 0 С 12 11 10 9 8 7 8 10 12 14 16 17

Несмотря на повсеместное внедрение компьютеров большинство функций, с которыми приходится сталкиваться специалисту-географу в повседневной деятельности, до сих пор представлены в виде табличного или графического задания. Табличные зависимости получаются в результате регистрации результатов опытов, лабораторных анализов, периодических замеров атмосферных или иных физических параметров. К сожалению, по таблице можно найти лишь те значения функции, значения аргумента которых имеются в таблице. В то же время часто возникают задачи, требующие нахождения значения функции для значения аргумента, не входящего в таблицу. Кроме того этот способ не дает достаточно наглядного представления о характере изменения функции с изменением независимого переменного. От этого недостатка свободны графики, полученные в результате работы автоматических приборов, но и графическое задание не всегда может быть достаточным для дальнейших исследований. Например, такая функция иногда должна в целях исследования протекания природного процесса подвергаться каким-либо математическим операциям, в том числе, дифференцированию или интегрированию. Таким образом, во многих случаях важно знать аналитическое задание функции. Так как точного аналитического задания функции, полученной в результате экспериментальной работы не существует, то для целей исследования применяют следующий прием: функцию, заданную таблично (функцию, заданную графически всегда можно представить в табличном виде) заменяют на некотором отрезке другой функцией более простой, близкой в некотором смысле к данной и имеющей аналитическое выражение. Существует два основных приема такой замены - интерполирование и аппроксимация функции-таблицы.

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

функция - это соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу одного множества ставится в соответствие некоторый элемент из другого множества.

график функции - это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:

точка располагается (или находится) на графике функции тогда и только тогда, когда .

Таким образом, функция может быть адекватно описана своим графиком.

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.



Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа - основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и qпринадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале .
Мы видим,что добавление n к аргументу x, не меняет значение функции.
Наименьшее отличное от нуля число из n есть , таким образом, это период sin 2x .

Значение аргумента, при котором функция равна 0, называется нулём (корнем ) функции.

Функция может иметь несколько нулей.

Например, функция y = x (x + 1)(x-3) имеет три нуля: x = 0, x = - 1, x =3 .

Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х .

На рис.7 представлен график функции с нулями: x = a, x = b и x = c .

Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой .

Обратная функция

Пусть задана функция у=ƒ(х) с областью определения D и множеством значений Е. Если каждому значению уєЕ соответствует единственное значение хєD, то определена функция х=φ(у) с областью определения Е и множеством значений D (см. рис. 102).

Такая функция φ(у) называется обратной к функции ƒ(х) и записывается в следующем виде: х=j(y)=f -1 (y).Про функции у=ƒ(х) и х=φ(у) говорят, что они являются взаимно обратными. Чтобы найти функцию х=φ(у), обратную к функции у=ƒ (х), достаточно решить уравнение ƒ(х)=у относительно х (если это возможно).

1. Для функции у=2х обратной функцией является функция х=у/2;

2.Для функции у=х2 хє обратной функцией является х=√у; заметим, что для функции у=х 2 , заданной на отрезке [-1; 1], обратной не существует, т. к. одному значению у соответствует два значения х (так, если у=1/4, то х1=1/2, х2=-1/2).

Из определения обратной функции вытекает, что функция у=ƒ(х) имеет обратную тогда и только тогда, когда функция ƒ(х) задает взаимно однозначное соответствие между множествами D и Е. Отсюда следует, что любая строго монотонная функция имеет обратную. При этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Заметим, что функция у=ƒ(х) и обратная ей х=φ(у) изображаются одной и той же кривой, т. е. графики их совпадают. Если же условиться, что, как обычно, независимую переменную (т. е. аргумент) обозначить через х, а зависимую переменную через у, то функция обратная функции у=ƒ(х) запишется в виде у=φ(х).

Это означает, что точка M 1 (x o ;y o) кривой у=ƒ(х) становится точкой М 2 (у о;х о) кривой у=φ(х). Но точки M 1 и М 2 симметричны относительно прямой у=х (см. рис. 103). Поэтому графики взаимно обратных функции у=ƒ(х) и у=φ(х) симметричны относительно биссектрисы первого и третьего координатных углов.

Сложная функция

Пусть функция у=ƒ(u) определена на множестве D, а функция u= φ(х) на множестве D 1 , причем для  x D 1 соответствующее значение u=φ(х) є D. Тогда на множестве D 1 определена функция u=ƒ(φ(х)), которая называется сложной функцией от х (или суперпозицией заданных функций, или функцией от функции).

Переменную u=φ(х) называют промежуточным аргументом сложной функции.

Например, функция у=sin2x есть суперпозиция двух функций у=sinu и u=2х. Сложная функция может иметь несколько промежуточных аргументов.

4. Основные элементарный функции и их графики.

Основными элементарными функциями называют следующие функции.

1) Показательная функция у=a х,a>0, а ≠ 1. На рис. 104 показаны графики показательных функций, соответствующие различным основаниям степени.

2) Степенная функция у=х α , αєR. Примеры графиков степенных функций, соответствующих различным показателям степени, предоставлены на рисунках

3)Логарифмическая функция y=log a x, a>0,a≠1;Графики логарифмических функций, соответствующие различным основаниям, показаны на рис. 106.

4) Тригонометрические функции у=sinx, у=cosx, у=tgх, у=ctgx; Графики тригонометрических функций имеют вид, показанный на рис. 107.

5) Обратные тригонометрические функции у=arcsinx, у=arccosх, у=arctgx, у=arcctgx. На рис. 108 показаны графики обратных тригонометрических функций.

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных с помощью конечного числа арифметических операций (сложения, вычитания, умножения, деления) и операций взятия функции от функции, называется элементарной функцией.

Примерами элементарных функций могут служить функции

Примерами неэлементарных функций могут служить функции

5. Понятия предела последовательности и функции. Свойства пределов.

Преде́л фу́нкции (предельное значение функции ) в заданной точке,предельной для области определения функции, - такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

В математике пределом последовательности элементов метрического пространства или топологического пространства называют элемент того же пространства, который обладает свойством «притягивать» элементы заданной последовательности. Пределом последовательности элементовтопологического пространства является такая точка, каждая окрестность которой содержит все элементы последовательности, начиная с некоторого номера. В метрическом пространстве окрестности определяются через функцию расстояния, поэтому понятие предела формулируется на языке расстояний. Исторически первым было понятиепредела числовой последовательности, возникающее в математическом анализе, где оно служит основанием для системы приближений и широко используется при построении дифференциального и интегральногоисчислений.

Обозначение:

(читается: предел последовательности икс-энное при эн, стремящемся к бесконечности, равен a )

Свойство последовательности иметь предел называют сходимостью : если у последовательности есть предел, то говорят, что данная последовательность сходится ; в противном случае (если у последовательности нет предела) говорят, что последовательность расходится . В хаусдорфовом пространстве и, в частности, метрическом пространстве , каждая подпоследовательность сходящейся последовательности сходится, и её предел совпадает с пределом исходной последовательности. Другими словами, у последовательности элементов хаусдорфово пространства не может быть двух различных пределов. Может, однако, оказаться, что у последовательности нет предела, но существует подпоследовательность (данной последовательности), которая предел имеет. Если из любой последовательности точек пространства можно выделить сходящуюся подпоследовательность, то, говорят, что данное пространство обладает свойством секвенциальной компактности (или, просто, компактности, если компактность определяется исключительно в терминах последовательностей).

Понятие предела последовательности непосредственно связано с понятием предельной точки (множества): если у множества есть предельная точка, то существует последовательность элементов данного множества, сходящаяся к данной точке.

Определение

Пусть дано топологическое пространство и последовательность Тогда, если существует элемент такой, что

где - открытое множество, содержащее , то он называется пределом последовательности . Если пространство является метрическим, то предел можно определить с помощью метрики: если существует элемент такой, что

где - метрика, то называется пределом .

· Если пространство снабжено антидискретной топологией, то пределом любой последовательности будет любой элемент пространства.

6. Предел функции в точке. Односторонние пределы.

Функция одной переменной. Определение предела функции в точке по Коши. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любого положительного числа  существует такое положительное число , что при всех х ≠ а, таких, что |x a | < , выполняется неравенство
| f (x ) – a | <  .

Определение предела функции в точке по Гейне. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любой последовательности {x n }, сходящейся к а (стремящейся к а , имеющей пределом число а ), причем ни при каком значении n х n ≠ а , последовательность {y n = f (x n)} сходится к b .

Данные определения предполагают, что функция у = f (x ) определена в некоторой окрестноститочки а , кроме, быть может, самой точки а .

Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.

Указанный предел обозначается так:

Геометрически существование предела функции в точке по Коши означает, что для любого числа > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2 > 0, высотой 2 и центром в точке (а; b ), что все точки графика данной функции на интервале (а – ; а + ), за исключением, быть может, точки М (а ; f (а )), лежат в этом прямоугольнике

Односторо́нний преде́л в математическом анализе - предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва ) и правосторо́нним преде́лом (преде́лом спра́ва ). Пусть на некотором числовом множестве задана числовая функция и число - предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

Дифференциальное

И интегральное исчисление функции

Одной переменной

Утверждено Редакционным советом

университета в качестве учебного пособия


Рецензенты:

Доктор технических наук, профессор Российского химико-технологического университета им. Д. И. Менделеева

Л. С. Гордеев

Кандидат физико-математических наук, доцент Московского автомобильно-дорожного государственного технического университета (МАДИ)

С. А. Изотова

Дифференциальное и интегральное исчисление функции одной

Д50 переменной: учеб. пособие / Е. Г. Рудаковская, М. Ф. Рушайло,

М. А. Меладзе, Е. Л. Гордеева, В. В. Осипчик; под ред. Е. Г. Рудаковской,

М. Ф. Рушайло. М. : РХТУ им. Д. И. Менделеева,

2012. – 108 с.

ISBN 978-5-7237-0993-5

Пособие представляет сжатое изложение лекций по математическому анализу, читаемых кафедрой высшей математики.

Пособие охватывает следующие разделы курса математического анализа: дифференциальное исчисление функций одной переменной, интегральное исчисление функций одной переменной. Большое внимание уделено разбору примеров по изучаемым темам, имеющим прикладное значение для других дисциплин.

Предназначено для студентов I курса всех факультетов и колледжей РХТУ им. Д. И. Менделеева.

УДК 517 (075)

ISBN 978-5-7237-0993-5 © Российский химико-технологический

университет им. Д. И. Менделеева, 2012


ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ.. 3

§ 1. ФУНКЦИЯ ОДНОЙ ПЕРЕМЕННОЙ, ОСНОВНЫЕ ПОНЯТИЯ.. 3

1. Определение функции одной переменной. 3

2. Способы задания функции. 3

3. Сложная и обратная функции. 3

4. Элементарные функции. 3

§ 2. ПРЕДЕЛ ФУНКЦИИ.. 3

1. Предел функции в конечной точке x 0 3

2. Односторонние пределы.. 3

3. Предел функции на бесконечности. 3

4. Бесконечно малые и бесконечно большие функции. 3

5. Основные теоремы о конечных пределах. 3

6. Первый замечательный предел. 3

7. Второй замечательный предел. 3

§ 3. НЕПРЕРЫВНОСТЬ ФУНКЦИИ.. 3

1. Непрерывность функции в точке и на промежутке. 3

2. Точки разрыва функции и их классификация. 3

§ 4. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ.. 3

1. Определение производной, её геометрический и механический смысл. …….3

2. Примеры вывода производных некоторых элементарных функций. 3

3. Таблица производных основных элементарных функций. 3

4. Дифференцируемость функции. Связь дифференцируемости с существованием производной и непрерывностью функции. 3

5. Правила дифференцирования. 3

6. Дифференцирование функции, заданной неявно. 3

7. Производные показательной и степенной функций. 3

8. Производные обратных тригонометрических функций. 3

9. Дифференциал функции. 3

10. Производные и дифференциалы высших порядков. 3

§ 5. СВОЙСТВА ФУНКЦИЙ, НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ……...37

1. Теорема Ролля. 3

2. Теорема Лагранжа. 3

3. Теорема Коши. 3

4. Правило Лопиталя. 3

§ 6. ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ.. 3

1. Асимптоты плоской кривой. 3

2. Монотонность функции. 3

3. Экстремумы функции. 3

4. Выпуклость, вогнутость и точки перегиба графика функции. 3

5. Наибольшее и наименьшее значения функции на отрезке. 3

6. Схема исследования функции. Построение графика. 3

ГЛАВА 2. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 3

§ 1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.. 3

1. Первообразная функция и её свойства. 3

2. Понятие неопределённого интеграла. 3

3. Свойства неопределённого интеграла. 3

4. Таблица основных неопределённых интегралов. 3

§ 2. МЕТОДЫ ИНТЕГРИРОВАНИЯ.. 3

1. Непосредственное интегрирование. 3

2. Интегрирование подстановкой. 3

3. Интегрирование по частям. 3

4. Интегрирование рациональных дробей. 3

5. Интегрирование тригонометрических выражений. 3

6. Интегрирование некоторых видов иррациональных выражений. 3

§ 3. ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ.. 3

1. Задача, приводящая к определённому интегралу. 3

2. Свойства определённого интеграла. 3

3. Вычисление определенного интеграла. Формула Ньютона–Лейбница. …....3

4. Методы интегрирования определённого интеграла. 3

5. Приложения определённого интеграла. 3

§ 4. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ.. 3

1. Интегралы с бесконечными пределами. 3

2. Интегралы от разрывных функций. 3


ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ФУНКЦИЯ ОДНОЙ ПЕРЕМЕННОЙ, ОСНОВНЫЕ ПОНЯТИЯ

Определение функции одной переменной

Определение. Пусть даны два множества X и Y . Если каждому элементу x из множества X по некоторому правилу f соответствует единственный элемент y из множества Y , то говорят, что на множестве X определена функция y = f (x ) с областью определения X = D (f ) и областью изменения Y = E (f ). При этом x считают независимой переменной, или аргументом функции, а y – зависимой переменной или функцией .

Частным значением функции y = f (x ) при фиксированном значении аргумента x = x 0 называют y 0 = f (x 0 ).

Графиком функции y = f (x ) называют геометрическое место точек M (x;f (x )) на плоскости Oxy , где x Î D (f ) и f (x ) Î E (f ).

Способы задания функции

1) Аналитический способ – способ задания функции с помощью формулы.

Различают несколько способов аналитического задания функции:

а) Функция задана явно формулой y = f (x ).

Например: , где D (y ) = (– ∞;1) (1;+∞).

б) Функция задана неявно уравнением, связывающем x и y : F (x ;y ) = 0.

Например: – уравнение окружности с центром в начале координат и радиусом r . Если из этого уравнения выразить y через x , то получится две функции:

и ,

которые имеют область определения , а области значений этих функций будут: для первой – , для второй – .

в) Функция задана параметрически с помощью некоторого параметра t , причём и аргумент x , и функция y зависят от этого параметра:

Например: можно задать окружность с помощью параметрических уравнений:

2) Табличный способ задания функции – например, таблицы Брадиса задают функции y = sin x , y = cos x и др.

3) Графический способ задания функции , когда зависимость функции от её аргумента задаётся графически.

Сложная и обратная функции

Определение 1 . Пусть функция y = f (U ) определена на множестве D (f ), а функция U = g (x ) определена на D (g ), причём E (g ) D (f ).

Тогда функция y = F (x ) = f (g (x )) называется сложной функцией (или функцией от функции, или суперпозицией функций f и g ).

Определение 2 . Пусть задана функция y = f (x ) взаимно однозначно отображающая множество X = D (f ) на множество Y = E (f ).

Тогда функция x = g (y ) называется обратной к функции y = f (x ), т. е. любому y E (f ) соответствует единственное значение x D (f ), при котором верно равенство y = f (x ).

Замечание. Графики функций y = f (x ) и x = g (y ) представляют одну и ту же кривую. Если же у обратной функции независимую переменную обозначить x , а зависимую y , то графики функций y = f (x ) и y = g (x ) будут симметричны относительно биссектрисы первого и третьего координатных углов.

Элементарные функции

Основные элементарные функции:

y = const (постоянная функция ), D (y ) = R; E (y ) = c .

(линейная функция ), D (y ) = R; E (y ) = R .

y = (степенная функция ), α ÎR , E (y ), D (y ) зависят от α.

y = (показательная функция ), a > 0, a ≠ 1, D (y ) = R , E (y ) = (0;+∞).

y = (логарифмическая функция )), a > 0, a ≠ 1, D (y ) = (0;+∞), E (y ) = R .

Тригонометрические функции :

y = sin x , D (y ) = R , E (y ) = .

y = cos x , D (y ) = R , E (y ) = .

y = tg x , D (y ) = , E (y ) = R .

y = ctg x , D (y ) = , E (y ) = R .

Обратные тригонометрические функции :

y = arcsin x , D (y ) = , E (y ) = .

y = arccos x , D (y ) = , E (y ) = .

y = arctg x , D (y ) = R , E (y ) = .

y = arcctg x , D (y ) = R , E (y ) = .

Элементарной функцией называется функция, составленная из основных элементарных функций с помощью конечного числа операций сложения, вычитания, умножения, деления и суперпозиции.

Например: – элементарная функция.

Графики обратных тригонометрических функций:

Определение 1. Окрестностью точки x 0 называется любой интервал, содержащий точкуx 0:

. и справедливо равенство:

Замечание 2. Если f (x ) имеет в точке x 0 правый и левый пределы, равные между собой, то в точке функция f (x ) имеет предел, равный числу:

Замечание 3. Если f (x ) имеет в точке x 0 правый и левый пределы, но они не равны между собой, то в точке x 0 функция f (x ) не имеет предела.



Понравилась статья? Поделиться с друзьями: