Кэш, кеш, cash — память. Для чего нужна кэш память? Влияние размера и скорости кэша на производительность. Что такое кэш-память компьютера

Кэш[или кеш (англ. cache, от фр.
Размещено на реф.рф
cacher - прятать; произносится - кэш) - промежуточный буфер с быстрым доступом, содержащий информацию, которая с наибольшей вероятностью должна быть запрошена быстродействующей памятью, к примеру оперативной. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из медленной памяти (внешней) или их перевычисление, за счёт чего уменьшается среднее время доступа.

Впервые слово ʼʼкэшʼʼ в компьютерном контексте было использовано в 1967 году во время подготовки статьи для публикации в журнале ʼʼIBM Systems Journalʼʼ. Статья касалась усовершенствования памяти в разрабатываемой модели 85 из серии IBM System/360. Редактор журнала Лайл Джонсон попросил придумать более описательный термин, нежели ʼʼвысокоскоростной буферʼʼ, но из-за отсутствия идей сам предложил слово ʼʼкэшʼʼ. Статья была опубликована в начале 1968 года, авторы были премированы IBM, их работа получила распространение и впоследствии была улучшена, а слово ʼʼкэшʼʼ вскоре стало использоваться в компьютерной литературе как общепринятый термин.

Функционирование

Диаграмма кэша памяти ЦПУ

Кэш - это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее ʼʼосновная памятьʼʼ). Кэширование применяется ЦПУ, жёсткими дисками, браузерами и веб-серверами.

Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всœего исследуется кэш. В случае если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай принято называть попаданием кэша. В случае если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай принято называть промахом кэша. Процент обращений к кэшу, когда в нём найден результат, принято называть уровнем попаданий или коэффициентом попаданий в кэш.

К примеру, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL - это идентификатор, а содержимое веб-страницы - это элементы данных.

В случае если кэш ограничен в объёме, то при промахе должна быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения.

При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи.

В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.

В кэше с отложенной записью (или обратной записью) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или ʼʼгрязныйʼʼ). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения крайне важно го элемента данных.

В случае, в случае если данные в основной памяти бывают изменены независимо от кэша, то запись кэша может стать неактуальной. Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша.

[править]

Кэш центрального процессора

Ряд моделœей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

См. также: Translation lookaside buffer.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости обращения и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня - L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. На других его можно отключить, но тогда значительно падает производительность процессора. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт (зачастую является возможным выполнять даже несколько чтений/записей одновременно). Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик - не более 128 Кбайт.

Вторым по быстродействию является L2-cache - кэш второго уровня. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, к примеру, в процессорном картридже (только в слотовых процессорах). В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1−12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В отличие от L1 кэша, его отключение может не повлиять на производительность системы. При этом, в задачах, связанных с многочисленными обращениями к ограниченной области памяти, к примеру, СУБД, производительность может упасть в десятки раз.

Кэш третьего уровня наименее быстродействующий и обычно расположен отдельно от ядра ЦП, но он должна быть очень внушительного размера - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании.

Кэш второго и третьего уровней наиболее полезен в математических задачах, к примеру, при обсчёте полигонов, когда объём данных меньше размера кэша. В этом случае, можно сразу записать всœе данные в кэш, а затем производить их обработку.

Ассоциативность кэша

Одна из фундаментальных характеристик кэш-памяти - уровень ассоциативности - отображает её логическую сегментацию. Дело в том, что последовательный перебор всœех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свёл бы на нет весь выигрыш от использования встроенной в ЦП памяти. По этой причине ячейки ОЗУ жёстко привязываются к строкам кэш-памяти (в каждой строке бывают данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ должна быть связано более одной строки кэш-памяти: к примеру, n-канальная ассоциативность (англ. n-way set associative) обозначает, что информация по некоторому адресу оперативной памяти может храниться в n местах кэш-памяти.

При одинаковом объёме кэша схема с большей ассоциативностью будет наименее быстрой, но наиболее эффективной.

Кэширование внешних накопителœей

Многие периферийные устройства хранения данных используют кэш для ускорения работы, в частности, жёсткие диски используют кэш-память от 1 до 64 Мбайт (модели с поддержкой NCQ/TCQ используют её для хранения и обработки запросов), устройства чтения CD/DVD/BD-дисков также кэшируют прочитанную информацию для ускорения повторного обращения. Операционная система также использует часть оперативной памяти в качестве кэша дисковых операций (в том числе для внешних устройств, не обладающих собственной кэш-памятью, в т.ч. жёстких дисков, flash-памяти и гибких дисков).

Применение кэширования внешних накопителœей обусловлено следующими факторами:

скорость доступа процессора к оперативной памяти во много раз больше, чем к памяти внешних накопителœей;

некоторые блоки памяти внешних накопителœей используются несколькими процессами одновременно и имеет смысл прочитать блок один раз, затем хранить одну копию блока в оперативной памяти для всœех процессов;

доступ к некоторым блокам оперативной памяти происходит гораздо чаще, чем к другим, в связи с этим использование кэширования для таких блоков в целом увеличивает производительность системы;

для некоторых блоков памяти внешних накопителœей не требуется непосредственной записи после модификации, и использование кэша для таких блоков оптимизирует использование ввода-вывода.

Кэширование, выполняемое операционной системой

Кэш оперативной памяти состоит из следующих элементов:

набор страниц оперативной памяти, разделённых на буферы, равные по длинœе блоку данных соответствующего устройства внешней памяти;

набор заголовков буферов, описывающих состояние соответствующего буфера;

хеш-таблицы, содержащей соответствие номера блока заголовку;

списки свободных буферов.

Алгоритм работы кэша с отложенной записью

Изначально всœе заголовки буферов помещаются в список свободных буферов. В случае если процесс намеревается прочитать или модифицировать блок, то он выполняет следующий алгоритм:

пытается найти в хеш-таблице заголовок буфера с заданным номером;

в случае, в случае если полученный буфер занят, ждёт его освобождения;

в случае, в случае если буфер не найден в хеш-таблице, берёт первый буфер из хвоста списка свободных;

в случае, в случае если список свободных буферов пуст, то выполняется алгоритм вытеснения (см. ниже);

в случае, в случае если полученный буфер помечен как ʼʼгрязныйʼʼ, выполняет асинхронную запись содержимого буфера во внешнюю память.

удаляет буфер из хеш-таблицы, в случае если он был помещён в неё;

помещает буфер в хеш-таблицу с новым номером.

Процесс читает данные в полученный буфер и освобождает его. В случае модификации процесс перед освобождением помечает буфер как ʼʼгрязныйʼʼ. При освобождении буфер помещается в голову списка свободных буферов.

Таким образом:

если процесс прочитал некоторый блок в буфер, то велика вероятность, что другой процесс при чтении этого блока найдёт буфер в оперативной памяти;

запись данных во внешнюю память выполняется только тогда, когда не хватает ʼʼчистыхʼʼ буферов, либо по запросу.

Алгоритм вытеснения

В случае если список свободных буферов пуст, то выполняется алгоритм вытеснения буфера. Алгоритм вытеснения существенно влияет на производительность кэша. Существуют следующие алгоритмы:

LRU (Least Recently Used) - вытесняется буфер, неиспользованный дольше всœех;

MRU (Most Recently Used) - вытесняется последний использованный буфер;

LFU (Least Frequently Used) - вытесняется буфер, использованный реже всœех;

ARC (англ.) (Adaptive Replacement Cache) - алгоритм вытеснения, комбинирующий LRU и LFU, запатентованный IBM.

Применение того или иного алгоритма зависит от стратегии кэширования данных. LRU наиболее эффективен, в случае если данные гарантированно будут повторно использованы в ближайшее время. MRU наиболее эффективен, в случае если данные гарантированно не будут повторно использованы в ближайшее время. В случае, в случае если приложение явно указывает стратегию кэширования для некоторого набора данных, то кэш будет функционировать наиболее эффективно.

Программное кэширование

Политика записи при кэшировании

При чтении данных кэш-память даёт однозначный выигрыш в производительности. При записи данных выигрыш можно получить только ценой снижения надёжности. По этой причине в различных приложениях должна быть выбрана та или иная политика записи кэш-памяти..

Существуют две основные политики записи кэш-памяти - сквозная запись (write-through) и отложенная запись (write-back).

сквозная запись подразумевает, что при изменении содержимого ячейки памяти, запись происходит синхронно и в кэш и в основную память.

отложенная запись подразумевает, что можно отложить момент записи данных в основную память, а записать их только в кэш. При этом данные будут выгружены в оперативную память только в случае обращения к ним какого либо другого устройства (другой ЦП, контроллер DMA) либо нехватки места в кэше для размещения других данных. Производительность, по сравнению со сквозной записью, повышается, но это может поставить под угрозу целостность данных в основной памяти, поскольку программный или аппаратный сбой может привести к тому, что данные так и не будут переписаны из кэша в основную память. Вместе с тем, в случае кэширования оперативной памяти, когда используются два и более процессоров, нужно обеспечивать согласованность данных в разных кэшах.

Кэширование интернет-страниц

В процессе передачи информации по сети может использоваться кэширование интернет-страниц - процесс сохранения часто запрашиваемых документов на (промежуточных) прокси-серверах или машинœе пользователя, с целью предотвращения их постоянной загрузки с сервера-источника и уменьшения трафика. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, информация перемещается ближе к пользователю. Управление кэшированием осуществляется при помощи HTTP-заголовков.

Как вариант, кэширование веб-страниц может осуществляться с помощью CMS конкретного сайта для снижения нагрузки на сервер при большой посœещаемости. Кэширование может производится как в память, так и в файловый кэш (кэш на файлах).

Кэширование результатов работы

Многие программы записывают куда-либо промежуточные или вспомогательные результаты работы, чтобы не вычислять их каждый раз, когда они понужнобятся. Это ускоряет работу, но требует дополнительной памяти (оперативной или дисковой). Примером такого кэширования является индексирование баз данных.

Кэш-память (КП), или кэш , представляет собой организованную в виде ассоциативного запоминающего устройства (АЗУ) быстродействующую буферную память ограниченного объема, которая располагается между регистрами процессора и относительно медленной основной памятью и хранит наиболее часто используемую информацию совместно с ее признаками (тегами), в качестве которых выступает часть адресного кода.

В процессе работы отдельные блоки информации копируются из основной памяти в кэш-память. При обращении процессора за командой или данными сначала проверяется их наличие в КП. Если необходимая информация находится в кэше, она быстро извлекается. Это кэш-попадание . Если необходимая информация в КП отсутствует (кэш-промах ), то она выбирается из основной памяти, передается в микропроцессор и одновременно заносится в кэш-память. Повышение быстродействия вычислительной системы достигается в том случае, когда кэш-попадания реализуются намного чаще, чем кэш-промахи .

Зададимся вопросом: «А как определить наиболее часто используемую информацию? Неужели сначала кто-то анализирует ход выполнения программы, определяет, какие команды и данные чаще используются, а потом, при следующем запуске программы, эти данные переписываются в кэш-память и уже тогда программа выполняется эффективно?» Конечно нет. Хотя в современных микропроцессорах имеется определенный механизм, который позволяет в некоторой степени реализовать этот принцип. Но в основном, конечно, кэш-память сама отбирает информацию, которая чаще всего используется. Рассмотрим, как это происходит.

Механизм сохранения информации в кэш-памяти

При включении микропроцессора в работу вся информация в его кэш-памяти недостоверна.

При обращении к памяти микропроцессор, как уже отмечалось, сна чала проверяет, не содержится ли искомая информация в кэш-памяти.

Для этого сформированный им физический адрес сравнивается с адресами ячеек памяти, которые были ранее кэшированы из ОЗУ в КП.

При первом обращении такой информации в кэш-памяти, естественно, нет, и это соответствует кэш-промаху . Тогда микропроцессор проводит обращение к оперативной памяти, извлекает нужную информацию, использует ее в своей работе, но одновременно записывает эту информацию в кэш.

Если бы в кэш-память заносилась только востребованная микропроцессором в данный момент информация, то, скорее всего, при следующем обращении вновь произошел бы кэш-промах: вряд ли следующее обращение произойдет к той же самой команде или к тому же самому операнду. Кэш-попадания происходили бы лишь после того, как в КП накопится достаточно большой фрагмент программы, содержащий некоторые циклические участки кода, или фрагмент данных, подлежащих повторной обработке. Для того чтобы уже следующее обращение к КП приводило как можно чаще к кэш-попаданиям , передача из оперативной памяти в кэш-память происходит не теми порциями (байтами или словами), которые востребованы микропроцессором в данном обращении, а так называемыми строками . То есть кэш-память и оперативная память с точки зрения кэширования организуются в виде строк. Длина строки превышает максимально возможную длину востребованных микропроцессором данных. Обычно она составляет от 16 до 64 байт и выровнена в памяти по границе соответствующего раздела (рис. 4.1).

Рис. 4.1. Организация обмена между оперативной и кэш-памятью

Высокий процент кэш-попаданий в этом случае обеспечивается благодаря тому, что в большинстве случаев программы обращаются к ячейкам памяи, расположенным вблизи от ранее использованных. Это свойство, называемое принципом локальности ссылок , обеспечивает эффективность использования КП. Оно подразумевает, что при исполнении программы в течение некоторого относительно малого интервала времени происходит обращение к памяти в пределах ограниченного диапазона адресов (как по коду программы, так и по данным).

Например, микропроцессору для своей работы потребовалось 2 байта информации. Если строка имеет длину 16 байт, то в кэш переписываются не только нужные 2 байта, но и некоторое их окружение. Когда микропроцессор обращается за новой информацией, в силу локальности ссылок, скорее всего, обращение произойдет по соседнему адресу. Затем опять по соседнему, опять по соседнему и т. д. Таким образом, ряд следующих обращений будет происходить непосредственно к кэш-памяти, минуя оперативную память (кэш-попадания) . Когда очередной сформированный микропроцессором физический адрес выйдет за пределы строки кэш-памяти (произойдет кэш-промах ), будет выполнена подкачка в кэш новой строки, и вновь ряд последующих обращений вызовет кэш-попадания .

Чем длиннее используемая при обмене между оперативной и кэшпамятью строка, тем больше вероятность того, что следующее обращение произойдет в пределах этой строки. Но в то же время чем длиннее строка, тем дольше она будет перекачиваться из оперативной памяти в кэш. И если очередная команда окажется командой перехода или выборка данных начнется из нового массива, то есть следующее обращение произойдет не по соседнему адресу, то время, затраченное на передачу длинной строки, будет использовано напрасно. Поэтому при выборе длины строки должен быть разумный компромисс между соотношением времени обращения к оперативной и кэш-памяти и вероятностью достаточно удаленного перехода от текущего адреса при выполнении программы. Обычно длина строки определяется в результате моделирования аппаратно-программной структуры системы.

После того как в КП накопится достаточно большой объем информации, увеличивается вероятность того, что формирование очередного адреса приведет к кэш-попаданию . Особенно велика вероятность этого при выполнении циклических участков программы.

Старая информация по возможности сохраняется в кэш-памяти. Ее замена на новую определяется емкостью, организацией и стратегией обновления кэша.

Типы кэш-памяти

Если каждая строка ОЗУ имеет только одно фиксированное место, на котором она может находиться в кэш-памяти, то такая кэш-память называется памятью с прямым отображением .

Предположим, что ОЗУ состоит из 1000 строк с номерами от 0 до 999, а кэш-память имеет емкость только 100 строк. В кэш-памяти с прямым отображением строки ОЗУ с номерами 0, 100, 200, …, 900 могут сохраняться только в строке 0 КП и нигде иначе, строки 1, 101, 201, …, 901

ОЗУ — в строке 1 КП, строки ОЗУ с номерами 99, 199, …, 999 сохраняются в строке 99 кэш-памяти (рис. 4.2). Такая организация кэш-памяти обеспечивает быстрый поиск в ней нужной информации: необходимо проверить ее наличие только в одном месте. Однако емкость КП при этом используется не в полной мере: несмотря на то, что часть кэш-памяти может быть не заполнена, будет происходить вытеснение из нее полезной информации при последовательных обращениях, например, к строкам 101, 301, 101 ОЗУ.

Рис. 4.2. Принцип организации кэш-памяти с прямым отображением

Кэш-память называется полностью ассоциативной , если каждая строка ОЗУ может располагаться в любом месте кэш-памяти.

В полностью ассоциативной кэш-памяти максимально используется весь ее объем: вытеснение сохраненной в КП информации проводится лишь после ее полного заполнения. Однако поиск в кэш-памяти, организованной подобным образом, представляет собой трудную задачу.

Компромиссом между этими двумя способами организации кэш-памяти служит множественно-ассоциативная КП, в которой каждая строка ОЗУ может находиться по ограниченному множеству мест в кэш-памяти.

При необходимости замещения информации в кэш-памяти на новую используется несколько стратегий замещения . Наиболее известными среди них являются:

  • LRU — замещается строка, к которой дольше всего не было обращений;
  • FIFO — замещается самая давняя по пребыванию в кэш-памяти строка;
  • Random — замещение проходит случайным образом.

Последний вариант, существенно экономя аппаратные средства по сравнению с другими подходами, в ряде случаев обеспечивает и более эффективное использование кэш-памяти. Предположим, например, что КП имеет объем 4 строки, а некоторый циклический участок программы имеет длину 5 строк. В этом случае при стратегиях LRU и FIFO кэш-память окажется фактически бесполезной ввиду отсутствия кэш-попаданий. В то же время при использовании стратегии случайного замещения информации часть обращений к КП приведет к кэш-попаданиям.

Некоторые эвристические оценки вероятности кэш-промаха при разных стратегиях замещения (в процентах) представлены в табл. 4.1.

Таблица 4.1. Вероятность кэш-промаха для различной кэш-памяти
Размер кэша,Кбайт Организация кэш-памяти
2-канальная ассоциативная 4-канальная ассоциативная 8-канальная ассоциативная
LRU Random LRU Random LRU Random
16 5.2 5.7 4.7 5.3 4.4 5.0
64 1.9 2.0 1.5 1.7 1.4 1.5
256 1.15 1.17 1.13 1.13 1.12 1.12

Анализ таблицы показывает, что:

  • увеличением емкости кэша, естественно, уменьшается вероятность кэш-промаха , но даже при незначительной на сегодняшний день емкости кэш-памяти в 16 Кбайт около 95 % обращений происходят к КП, минуя оперативную память;
  • чем больше степень ассоциативности кэш-памяти, тем больше вероятность кэш-попадания за счет более полного заполнения КП (время поиска информации в КП в данном анализе не учитывается);
  • механизм LRU обеспечивает более высокую вероятность кэш-попадания по сравнению с механизмом случайного замещения Random, однако этот выигрыш не очень значителен.

Соответствие между данными в оперативной памяти и в кэш-памяти обеспечивается внесением изменений в те области ОЗУ, для которых данные в кэш-памяти подверглись изменениям. Существует два основных способа реализации этих действий: со сквозной записью (writethrough) и с обратной записью (write-back).

При считывании оба способа работают идентично. При записи кэширование со скозной записью обновляет основную память параллельно с обновлением информации в КП. Это несколько снижает быстродействие системы, так как микропроцессор впоследствии может вновь обратиться по этому же адресу для записи информации, и предыдущая пересылка строки кэш-памяти в ОЗУ окажется бесполезной. Однако при таком подходе содержимое соответствующих друг другу строк ОЗУ и КП всегда идентично. Это играет большую роль в мультипроцессорных системах с общей оперативной памятью.

Кэширование с обратной записью модифицирует строку ОЗУ лишь при вытеснении строки кэш-памяти, например, в случае необходимости освобождения места для записи новой строки из ОЗУ в уже заполненную КП. Операции обратной записи также инициируются механизмом поддержания согласованности кэш-памяти при работе мультипроцессорной системы с общей оперативной памятью.

Промежуточное положение между этими подходами занимает способ, при котором все строки, предназначенные для передачи из КП в ОЗУ, предварительно накапливаются в некотором буфере. Передача осуществляется либо при вытеснении строки, как в случае кэширования с обратной записью , либо при необходимости согласования кэш-памяти нескольких микропроцессоров в мультипроцессорной системе, либо при заполнении буфера. Такая передача проводится в пакетном режиме, что более эффективно, чем передача отдельной строки.

Организация внутренней кэш-памяти микропроцессора

Внутренний кэш 32-разрядного универсального микропроцессора является общим при обращении как к командам, так и к данным. Обращение ведется по физическим адресам.

Кэш-память обычно реализуется в виде ассоциативного ЗУ, в котором для каждой строки сохраняются дополнительные сведения, называемые тегом, или признаком, в качестве которого выступает адресный код или его часть. Когда в АЗУ подается адрес, с ним одновременно сравниваются все теги.

Внутренняя кэш-память в микропроцессоре i486 реализует сквозную запись . Начиная с МП Pentium используется сквозная или обратная запись .

Во внешней КП применяется любой способ записи или их комбинация.

Внутренняя кэш-память МП i486 имеет емкость 8 Кбайт и организована в виде 4-канальной ассоциативной памяти. Это означает, что данные из какой-либо строки ОЗУ могут храниться в любой из 4 строк кэш-памяти.

КП состоит из следующих блоков (рис. 4.3):

  • блока данных,
  • блока тегов,
  • блока достоверности и LRU.

Рис. 4.3. Структура внутренней кэш-памяти МП i486

Блок данных содержит 8 Кбайт данных и команд. Он разделен на 4 массива (направления), каждый из которых состоит из 128 строк. Строка содержит данные из 16 последовательных адресов памяти начиная с адреса, кратного 16. Индекс массивов блока данных, состоящий из 7 бит, соответствует 4 строкам КП, по одной из каждого массива. Четыре строки КП с одним и тем же индексом называются множеством.

В блоке тегов имеется один тег длиной 21 бит для каждой строки данных в КП. Блок тегов также разделен на 4 массива по 128 тегов. Тег содержит старшие 21 бит физического адреса данных, находящихся в соответствующей строке КП.

В блоке достоверности и LRU содержится по одному 7-разрядному значению для каждого из 128 множеств строк КП: 4 бита достоверности (V) по одному на каждую строку множества и 3 бита (B0 … B2), управляющие механизмом LRU. Биты достоверности показывают, содержит ли строка достоверные (V = 1) или недостоверные (V = 0) данные. При программной очистке КП и аппаратном сбросе процессора все биты достоверности сбрасываются в 0.

Адресация кэш-памяти осуществляется путем разделения старших 28 бит физического адреса на 2 части. Младшие 7 бит из этих разрядов (разряды 10…4 физического адреса) образуют поле индекса и определяют множество, в котором могут храниться данные. Старшие 21 бит (разряды 31…11 физического адреса) служат полем тега и применяются для определения того, находится ли информация с данным физическим адресом в какой-либо строке выбранного множества.

Поиск в кэш-памяти информации с заданным физическим адресом выполняется следующим образом:

Физический адрес, по которому происходит обращение, разбивается на 3 поля: Тег, Индекс, № байта. 7 разрядов А10…А4 поля индекса определяют одно из 128 множеств.

В выбранном множестве содержатся 4 строки с информацией.

Чтобы определить, присутствует ли нужная информация в одной из строк этого множества, проводится сравнение старших 21 бита физического адреса (поле Тег) с тегами строк выбранного множества. Сравнение проводится только для достоверных строк, то есть тех, у которых в блоке достоверности установлен бит достоверности V = 1.

Если для одной из строк ее тег и разряды А31…А11 физического адреса совпали, то это означает, что произошло кэш-попадание и необходимая информация есть в кэш-памяти.

Считывается найденная строка из 16 байт. Искомый байт в ней определяется 4 младшими разрядами физического адреса (А3…А0).

Если на этапе 3 совпадения не произошло или все строки множества недостоверны, эта ситуация определяется как кэш-промах . В этом случае по сформированному микропроцессором физическому адресу выполняется обращение к оперативной памяти. Из ОЗУ извлекается нужная информация, и содержащая ее строка записывается в свободную строку выбранного множества. Старшие 21бит физического адреса записываются в поле тега этой строки. Если все строки в выбранном множестве достоверны, то замещается строка, к которой дольше всего не было обращений согласно механизму LRU. Этот механизм действует точно так же, как и при вытеснении строк из буфера ассоциативной трансляции TLB.

Режим работы кэш-памяти определяется программно установкой разрядов CD (запрет кэширования) и NW (запрет сквозной записи) в управляющем регистре CR0. Кэширование можно разрешить (это состояние после инициализации при сбросе), можно запретить при наличии достоверных строк (в этом режиме КП действует как быстрое внутреннее ОЗУ) или, наконец, кэширование может быть полностью запрещено.

Управление работой кэш-памяти на уровне страниц

В элементах каталога страниц и таблиц страниц имеются 2 бита, которые применяются для управления выходными сигналами процессора и участвуют в кэшировании страниц.

Бит PCD запрещает (PCD = 1) или разрешает (PCD = 0) кэширование страницы. Запрещение кэширования необходимо для страниц, которые содержат порты ввода/вывода с отображением на память. Оно также полезно для страниц, кэширование которых не дает выигрыша в быстродействии, например, страниц, содержащих программу инициализации.

Бит PWT определяет метод обновления ОЗУ и внешней кэш-памяти (кэш 2-го уровня). Если PWT = 1, то для данных в соответствующей странице определяется кэширование со сквозной записью, при PWT = 0 применяется способ обратной записи. Используется в микропроцессорах начиная с Pentium. Так как внутренняя кэш-память в МП i486 работает со сквозной записью, состояние бита PWT на нее не влияет. Бит PWT в этом случае действует только на внешнюю КП.

Обеспечение согласованности кэш-памяти микропроцессоров в мультипроцессорных системах

Рассмотрим особенности работы кэш-памяти в том случае, когда одновременно несколько микропроцессоров используют общую оперативную память (рис. 4.4). В этом случае могут возникнуть проблемы, связанные с кэшированием информации из оперативной памяти в кэш-память микропроцессоров.

Рис. 4.4. Структура мультимикропроцессорной системы с общей оперативной памятью

Предположим, что МП А считал некоторую строку данных из ОЗУ в свою внутреннюю КП и изменил данные в этой строке в процессе работы.

Мы отмечали, что существует два основных механизма обновления оперативной памяти:

сквозная запись , которая подразумевает, что как только изменилась информация во внутренней кэш-памяти, эта же информация копируется в то же место оперативной памяти, и

обратная запись , при которой микропроцессор после изменения информации во внутреннем кэше отражает это изменение в оперативной памяти не сразу, а лишь в тот момент, когда происходит вытеснение данной строки из кэш-памяти в оперативную. То есть существуют определенные моменты времени, когда информация, предположим, по адресу 2000 имеет разные значения: микропроцессор ее обновил, а в оперативной памяти осталось старое значение. Если в этот момент другой микропроцессор (МП В), использующий ту же оперативную память, обратится по адресу 2000 в ОЗУ, то он прочитает оттуда старую информацию, которая к этому времени уже не актуальна.

Для обеспечения согласованности (когерентности) памяти в мультипроцессорных системах используются аппаратные механизмы, позволяющие решить эту проблему. Такие механизмы называются протоколами когерентности кэш-памяти . Эти протоколы призваны гарантировать, что любое считывание элемента данных возвращает последнее по времени записанное в него значение.

Существует два класса протоколов когерентности:

  • протоколы на основе справочника (directory based): информация о состоянии блока физической памяти содержится только в одном месте, называемом справочником (физически справочник может быть распределен по узлам системы);
  • протоколы наблюдения (snooping): каждый кэш, который содержит копию данных некоторого блока физической памяти, имеет также соответствующую копию служебной информации о его состоянии; централизованная система записей отсутствует; обычно кэши расположены на общей шине, и контроллеры всех кэшей наблюдают за шиной (просматривают ее), чтобы определять, какие обращения по адресам в пределах этого блока происходят со стороны других микропроцессоров.

В мультипроцессорных системах с общей памятью наибольшей популярностью пользуются протоколы наблюдения , поскольку для опроса состояния кэшей они могут использовать уже существующее физическое соединение — шину памяти.

Для поддержания когерентности применяется два основных метода.

Один из методов заключается в том, чтобы гарантировать, что процессор должен получить исключительные права доступа к элементу данных перед выполнением записи в этот элемент данных. Этот тип протоколов называется протоколом записи с аннулированием (write invalidate protocol), поскольку при выполнении записи он аннулирует другие копии. Это наиболее часто используемый протокол как в схемах на основе справочников , так и в схемах наблюдения . Исключительное право доступа гарантирует, что во время выполнения записи не существует никаких других копий элемента данных, в которые можно писать или из которых можно читать: все другие кэшированные копии элемента данных аннулированы.

Альтернативой протоколу записи с аннулированием является обновление всех копий элемента данных в случае записи в этот элемент данных.

Этот тип протокола называется протоколом записи с обновлением (write update protocol), или протоколомзаписи с трансляцией (write broadcast protocol).

Эти две схемы во многом похожи на схемы работы кэш-памяти со сквозной и с обратной записью. Ключевым моментом реализации в многопроцессорных системах с небольшим числом процессоров как схемы записи с аннулированием, так и схемы записи с обновлением данных, является использование для выполнения этих операций механизма шины. Для выполнения операции обновления или аннулирования процессор просто захватывает шину и транслирует по ней адрес, по которому должно производиться обновление или аннулирование данных. Все процессоры непрерывно наблюдают за шиной, контролируя появляющиеся на ней адреса.

Процессоры проверяют, не находится ли в их кэш-памяти адрес, появившийся на шине. Если это так, то соответствующие данные в кэше либо аннулируются, либо обновляются в зависимости от используемого протокола.

Рассмотрим один из наиболее распространенных протоколов, обеспечивающих согласованную работу кэш-памяти нескольких микропроцессоров и основной памяти в мультимикропроцессорных системах, протокол MESI , который относится к группе протоколов наблюдения с аннулированием . Будем знакомиться с ним на примере двухпроцессорной системы, состоящей из микропроцессоров A и B.

Этот протокол использует 4 признака состояния строки кэш-памяти микропроцессора, по первым буквам которых и называется протокол:

  • измененное состояние (Modified): информация, хранимая в кэшпамяти микропроцессора А, достоверна только в этом кэше; она отсутствует в оперативной памяти и в кэш-памяти других микропроцессоров;
  • исключительная копия (Exclusive): информация, содержащаяся в кэше А, содержится еще только в оперативной памяти;
  • разделяемая информация (Shared): информация, содержащаяся в кэше А, содержится в кэш-памяти по крайней мере еще одного МП, а также в оперативной памяти;
  • недостоверная информация (Invalid): в строке кэш-памяти находится недостоверная информация.

Таким образом, состояние признаков потокола MESI отражает следующие состояния (по отношению к МПА) строки кэш-памяти (табл. 4.2):

Таблица 4.2. Формирование признаков состояния протокола MESI
Cостояние признака протокола Состояние строки памяти
Кэш А Кэш В ОЗУ
Modified Д НД НД
Shared Д Д Д
Exclusive Д НД Д
Invalid НД Х Х

При работе микропроцессора А с точки зрения обеспечения когерентности памяти возможны следующие ситуации:

  • RH (Read Hit) — кэш-попадание при чтении;
  • WH (Write Hit) — кэш-попадание при записи;
  • RME (Read Miss Exclusive) — кэш-промах при чтении;
  • RMS (Read Miss Shared) — кэш-промах при чтении, но соответствующий блок есть в кэш-памяти другого микропроцессора;
  • WM (Write Miss) — кэш-промах при записи;
  • SHR (Snoop Hit Read) — обнаружение копии блока при прослушивании операции чтения другого кэша;
  • SHW (Snoop Hit Write) — обнаружение копии блока при прослушивании операции записи другого кэша.

Наибольший интерес здесь представляют две последние позиции.

Современные микропроцессоры имеют двунаправленную шину адреса.

Выдавая информацию на эту шину, микропроцессор адресует ячейки оперативной памяти или устройства ввода-вывода. В силу того, что в рассматриваемой мультипроцессорной системе микропроцессоры связаны общей шиной, в том числе и шиной адреса, принимая информацию по адресным линиям, микропроцессор определяет, было ли обращение по адресам, содержащимся в его кэш-памяти, со стороны других микропроцессоров. При обнаружении такого обращения меняется состояние строки кэш-памяти микропроцессора.

Изменения признака состояния блока кэш-памяти МП в зависимости от различных ситуаций в его работе и работе мультимикропроцессорной системы в целом представлены на рис. 4.5.

Рис. 4.5. MESI-диаграмма обеспечения когерентности кэш-памяти

Проиллюстрируем некоторые из представленных переходов.

Пусть блок кэш-памяти находится в состоянии Modified, то есть достоверная информация находится только в кэш-памяти данного МП. Тогда в случае обнаружения при прослушивании адресной шины обращения со стороны другого микропроцессора для чтения информации по входящим в данную строку адресам микропроцессор должен передать эту строку кэшпамяти в ОЗУ, откуда она уже будет прочитана другим микропроцессором.

При этом состояние строки в кэш-памяти рассматриваемого микропроцессора изменится с модифицированного на разделяемое (Shared).

Если строка кэш-памяти находилась в состоянии Invalid, то есть информация в ней была недостоверной, то по отношению к этой строке следует рассматривать только ситуации, связанные с кэш-промахами . Так, если произошел кэш-промах при выполнении операции записи, то необходимая строка будет занесена в кэш-память данного МП, в эту строку будут записаны измененные данные, и она приобретет статус исключительного владельца новой информации (Modified).

Краткие итоги . В лекции рассмотрены общие принципы функционирования кэш-памяти микропроцессора, организация кэш-памяти с прямым отображением, полностью ассоциативной и множественно-ассоциативной КП. Рассмотрены основные механизмы обновления оперативной памяти: кэширование со сквозной и с обратной записью. Представлена организация внутренней кэш-памяти микропроцессора. Разобраны способы обеспечения согласованности кэш-памяти микропроцессоров в мультипроцессорных системах.

Речь идет не о наличности, а о кэш -памяти процессоров и не только. Из объема кэш -памяти торгаши сделали очередной коммерческий фетиш, в особенности с кэшем центральных процессоров и жестких дисков (у видеокарт он тоже есть – но до него пока не добрались). Итак, есть процессор ХХХ с кэшем L2 объемом 1Мб, и точно такой же процессор XYZ с кэшем объемом 2Мб. Угадайте какой лучше? Аа – вот не надо так сразу!

Кэш -память – это буфер, куда складывается то, что можно и/или нужно отложить на потом. Процессор выполняет работу и возникают ситуации, когда промежуточные данные нужно где-то сохранить. Ну конечно в кэше! – ведь он на порядки быстрее, чем оперативная память, т.к. он в самом кристалле процессора и обычно работает на той же частоте. А потом, через какое то время, эти данные он выудит обратно и будет снова их обрабатывать. Грубо говоря как сортировщик картошки на конвейере, который каждый раз, когда попадается что-то другое кроме картошки (морковка ) , бросает ее в ящик. А когда тот полон – встает и выносит его в соседнюю комнату. В этот момент конвейер стоит и наблюдается простой. Объем ящика и есть кэш в данной аналогии. И сколько его надо – 1Мб или 12? Понятно, что если его объем мал придется слишком много времени уделят выносу и будет простой, но с какого то объема его дальнейшее увеличение ничего не даст. Ну будет ящик у сортировщика на 1000кг морковки – да у него за всю смену столько ее не будет и от этого он НЕ СТАНЕТ В ДВА РАЗА БЫСТРЕЕ! Есть еще одна тонкость – большой кэш может вызывать увеличение задержек обращения к нему во-первых, а заодно повышается и вероятность возникновения ошибок в нем, например при разгоне – во-вторых. (о том КАК в этом случае определить стабильность/нестабильность процессора и выяснить что ошибка возникает именно в его кэше, протестировать L1 и L2 – можно прочесть тут.) В-третьих – кэш выжирает приличную площадь кристалла и транзисторный бюджет схемы процессора. То же самое касается и кэш памяти жестких дисков. И если архитектура процессора сильная – у него будет востребовано во многих приложениях 1024Кб кэша и более. Если у вас быстрый HDD – 16Мб или даже 32Мб уместны. Но никакие 64Мб кэша не сделают его быстрее, если это обрезок под названием грин версия (Green WD) с частотой оборотов 5900 вместо положеных 7200, пусть даже у последнего будет и 8Мб. Потом процессоры Intel и AMD по-разному используют этот кэш (вообще говоря AMD более эффективно и их процессоры часто комфортно довольствуются меньшими значениями). Вдобавок у Intel кэш общий, а вот у AMD он персональный у каждого ядра. Самый быстрый кэш L1 у процессоров AMD составляет по 64Кб на данные и инструкции, что вдвое больше, чем у Intel. Кэш третьего уровня L3 обычно присутствует у топовых процессоров наподобие AMD Phenom II 1055T X6 Socket AM3 2.8GHz или у конкурента в лице Intel Core i7-980X. Прежде всего большие объемы кэша любят игры. И кэш НЕ любят многие профессиональные приложения (см. Компьютер для рендеринга, видеомонтажа и профприложений). Точнее наиболее требовательные к нему вообще равнодушны. Но чего точно не стоит делать, так это выбирать процессор по объему кэша. Старенький Pentium 4 в последних своих проявлениях имел и по 2Мб кэша при частотах работы далеко за 3ГГц – сравните его производительность с дешевеньким двуядерничком Celeron E1***, работающим на частотах около 2ГГц. Он не оставит от старичка камня на камне. Более актуальный пример – высокочастотный двухъядерник E8600 стоимостью чуть не 200$ (видимо из-за 6Мб кэша) и Athlon II X4-620 2,6ГГц, у которого всего 2Мб. Это не мешает Атлону разделать конкурента под орех.

Как видно на графиках – ни в сложных программах, ни в требовательных к процессору играх никакой кэш не заменит дополнительных ядер. Athlon с 2Мб кэша (красный) легко побеждает Cor2Duo с 6Мб кэша даже при меньшей частота и чуть не вдвое меньшей стоимости. Так же многие забывают, что кэш присутствует в видеокартах, потому что в них, вообще говоря, тоже есть процессоры. Свежий пример видеокарта GTX460, где умудряются не только порезать шину и объем памяти (о чем покупатель догадается) – но и КЭШ шейдеров соответственно с 512Кб до 384Кб (о чем покупатель уже НЕ догадается). А это тоже добавит свой негативный вклад в производительность. Интересно еще будет выяснить зависимость производительности от объема кэша. Исследуем как быстро она растет с увеличением объема кэша на примере одного и того же процессора. Как известно процессоры серии E6*** , E4*** и E2*** отличаются только объемом кэша (по 4, 2 и 1 Мб соответственно). Работая на одинаковой частоте 2400МГц они показывают следующие результаты.

Как видно – результаты не слишком отличаются. Скажу больше – если бы участвовал процессор с объемом 6Мб – результат увеличился бы еще на чуть-чуть, т.к. процессоры достигают насыщения. А вот для моделей с 512Кб падение было бы ощутимым. Другими словами 2Мб даже в играх вполне достаточно. Резюмируя можно сделать такой вывод – кэш это хорошо, когда УЖЕ много всего остального. Наивно и глупо менять скорость оборотов винчестера или количество ядер процессора на объем кэша при равной стоимости, ибо даже самый емкий ящик для сортировки не заменит еще одного сортировщика Но есть и хорошие примеры.. Например Pentium Dual-Core в ранней ревизии по 65-нм процессу имел 1Мб кэша на два ядра (серия E2160 и подобные), а поздняя 45-нм ревизия серии E5200 и дальше имеет уже 2Мб при прочих равных условиях (а главное – ЦЕНЕ). Конечно же стоит выбирать именно последний.

Что значит очистить кэш: зачем его очищать + 3 способа очистить компьютер + очистка кэша 4 видов браузеров + 2 способа очистить память на Android + 3 способа почистить iPhone.

Компьютеры, планшеты, телефоны нуждаются в грамотной эксплуатации и технической поддержке, если вы хотите, чтобы их работа была правильной, быстрой и бесперебойной.

К одной из важнейших манипуляций для поддержания ПК «в форме» относится решение очистить кэш.

Давайте рассмотрим, что значит очистить кэш , и как это сделать на разных браузерах и операционных системах.

Что такое кэш?

Кэш – это сверхоперативная память (буфер) для временных данных с высокой скоростью доступа и ограниченным объемом.

Он нужен для ускорения обращения к данным, которыми используют часто. Кэширование используется центральным процессором ПК, жесткими дисками, браузерами.

Кэш браузера – хранилище временных данных, загруженных из сетевых ресурсов. Интернет-обозреватель сохраняет временные документы на винчестере ПК.

Когда в браузере просматриваются страницы из интернета, он автоматически сохраняет некоторые части страницы на память компьютера для того, чтобы при повторном просмотре страницы взять данные не с сервера сайта, а из памяти системы, что в разы увеличивает скорость открытия страницы.

Работу процесса кэширования легко проверить.
Откройте любой новый для браузера сайт, затем закройте его.
При повторном открытии сайт загрузится значительно быстрее, чем в первый раз.

Интернет-обозреватель кэширует не все файлы и данные. Это зависит от настроек каждого сайта, которые выставляет веб-мастер.

Что значит очистить кэш?

Процесс очистки подразумевает удаление временных файлов, сохраненных при работе с данными, сайтами. Что значит «очистить кэш»? Стереть все графические и текстовые файлы.

В следующей сессии работы браузера он снова будет брать информацию с сервера сайта, и снова будет сохранять полученные данные в память системы.

Зачем чистить кэш?

Так как временные документы сохраняются на винчестере компьютера, со временем они занимают лишнее место, что влияет на скорость работы операционной системы.

Это отражается как на работе самого компьютера, так и на работе браузера.

Если используются несколько браузеров, каждый из них сохраняет данные в память системы, то таким образом, информация дублируется.
Соответственно, занимает больше места.

Есть еще одна причиной, по которой необходимо чистить память: вытягивая данные с жесткого диска, а не с сервера, интернет-обозреватель может не показывать обновления, произошедшие на сайте.

Как очистить кэш на компьютере?

Чистку ненужных файлов компьютера нельзя назвать простой процедурой, в отличие от аналогичной чистки браузера.

Но если ваш ПК стал подвисать, с большой вероятностью можно сказать, что такая чистка поможет вернуть ему быстродействие.

Рассмотрим процесс удаления временных документов для самой популярной операционной системы – Windows.

При чистке можно использовать встроенные инструменты или специальные программы. Стандартная чистка инструментами Windows считается более эффективной, но требует больше времени и навыков.

Стандартная очистка Windows состоит из 3 пунктов:

  • очистить кэшированную память DNS (система для получения информации о доменах);
  • удаление кэшированных файлов из thumbnails (папка с эскизами просмотренных изображений);
  • очистить кэш-память.

а) Очистить DNS кэш

Чистка DNS кэша производится с помощью командной строки. Зайдите в «Пуск», выберите «Все программы», после «Стандартные», из выпавшего меню откройте «Командная строка».

В появившуюся программу впишите команду «ipconfig /flushdns» без скобок.

В итоге компьютер сам очищает DNS от ненужных данных.

b) Чистка thumbnails кэша


Чистка thumbnails кэша делается с помощью стандартной программы.

Для ее запуска пройдите такой путь:

  1. Зайдите в меню «Пуск ».
  2. Найдите в нем «Все программы ».
  3. Затем «Стандартные программы ».
  4. Потом «Служебные ».
  5. И наконец «Очистка диска ».

Вы увидите окошко «Выбор диска ». Выбираете жесткий диск, на котором находится ОС Windows (как правило, на диске С).

Теперь ваш thumbnails кэш пуст.

c) Очистить кэш-памяти


Еще один способ удалить ненужные временные документы с компьютера

показан в видеоролике:

И не забывайте чистить «Корзину», данные в ней тоже могут занимать много места.

d) Специальные программы для очистки кэша

Для очистки ненужных данных в «оперативке» компьютера удобно пользоваться специальными программами.

Разработано таких сервисов много, но наиболее популярной является Ccleaner.

Эта программа бесплатная. Найти ее в интернете и загрузить на компьютер не составит труда.

Официальный сайт разработчиков, с которого тоже можно скачать бесплатную версию программы: http://www.piriform.com/CCLEANER

Также можно воспользоваться онлайн-версией без установки на ПК.

Чтобы почистить ПК средствами Ccleaner, откройте программу на вкладке «Очистка».

На вкладке «Windows» можно выбрать данные, которые необходимо удалить. Обычно автоматическая настройка достаточно точно определяет такие документы.

Программа удалит ненужные файлы с компьютера, включая те, что сохранены интернет-обозревателями, и из прочего программного обеспечения.

Кликните на кнопку «Анализ» и дождитесь его окончания. После этого нажимайте «Очистка».

Как очистить кэш браузера?

Если необходимости удалить все временные документы с компьютера нет, то можно просто почистить память интернет-обозревателей. Для разных интернет-обозревателей методы очистки немного отличаются.

1) Как очистить память в Internet Explorer?

На панели задач или в основном меню найдите «Сервис» и далее «Свойства обозревателя».

В появившемся окне вам нужна вкладка «Общее», где есть область «История просмотра». В ней кнопочка «Удалить…». Кликнув на эту кнопку, вы увидите появившееся окно со списком документов для утилизации.

Необходимые файлы уже выбраны автоматически, но вы можете самостоятельно отметить, какие данные следует удалить. После нажатия на кнопку «Удалить» временные документы будут стерты.

2) Очистка памяти в Firefox

На основном экране откройте «Настройки». В появившемся окошке найдите «Дополнительные» и зайдите в «Сеть».

В этой вкладке есть область «Кэшированное веб-содержимое» с кнопочкой «Очистить сейчас». Жмете на нее, и Firefox запустит анализ и сотрет ненужное.

3) Чистка памяти в Google Chrome

В Google Chrome найдите «Инструменты», потом «Показать дополнительные настройки».

В некоторых версиях интернет-обозревателя путь такой: «Дополнительные инструменты» — «Удаление данных о просмотренных страницах».

Выбрав этот пункт, вы увидите окошко «Очистить историю».

Выставьте период утилизации «За все время» и выберите «Файлы куки и другие данные с сайтов» и «Изображения, сохраненные в кэше». В конце вам нужно нажать «Очистить историю».

4) Очистка памяти в Опере

Зайдите в раздел «Настройки». В появившемся окошке откройте вкладку «Безопасность». Здесь есть область «Конфиденциальность» с кнопочкой «Очистить историю посещений», жмите на нее.

В появившемся окне следует выбрать период «С самого начала» и отметить, какие данные необходимо утилизировать. Нажимайте на «Очистить историю посещений». Готово.

Как очистить кэш в телефоне?

Современные телефоны, точнее, смартфоны и планшеты нуждаются в таком же обслуживании, как и персональные компьютеры.

В них тоже нужно утилизировать ненужные документы. И делать это следует чаще, чем на ПК, так как объемы «оперативки» меньше и система быстро начинает подтормаживать.

1) Очистка памяти на Android

В операционной системе Android есть 3 вида кэшированной памяти:

  • dalvik-Cache – здесь хранятся оптимизированные файлы приложений;
  • системный кэш – на него записываются файлы системных программ;
  • кэш приложений – тут сохраняются файлы таких приложений, как интернет-обозреватели, игры и прочее.

Чтобы их почистить, можно использовать несколько методов: вручную с помощью стандартной встроенной утилиты или используя дополнительное программное обеспечение.

Способы очистки памяти на Android:

Для примера рассмотрим программу Clean Master:


Как удалить временную «оперативку» с помощью программы CCleaner

смотрите в видеоролике:

2) Очистка кэша на iPhone


Не забывайте периодически очищать ваш компьютер и телефон от временных файлов, ведь теперь вы знаете, что значит очистить кэш – освободить место и облегчить работу системе, повысив тем самым ее производительность и скорость.

Инструкция

Папка, в которой расположены временные файлы интернета, по умолчанию имеет в компьютере атрибут «скрытая». Для того чтобы найти кэш-память , надо включить показ скрытых файлов и папок. Нажмите «Пуск» → «Панель управления» → «Свойства папок», выберите раздел «Вид» и в нем вариант «Показывать скрытые файлы и папки». Затем нажмите «ОК».

В браузере Windows Internet Explorer войдите в настройки браузера через значок шестеренки, расположенный справа наверху страницы. Перейдите к «Свойствам обозревателя», в раздел «Общие» → « История просмотра», выберите «Параметры». В окне с параметрами нажмите «Показать файлы». Откроется список файлов, сохраняемых обозревателем в своей кэш-памяти .

Чтобы найти путь к файлам в Mozilla Firefox, введите в адресную строку браузера about:cache. Откроется окно с информацией о кэше, в разделе Cache Directory и будет указан нужный путь. Скопируйте его и затем вставьте в строку поиска проводника Windows. Открывшийся список файлов и будет содержимым кэш-памяти Mozilla Firefox.

Для браузера Opera путь к кэшу будет зависеть от операционной системы вашего компьютера. Если у вас установлена Windows XP, кэш будет расположен по адресу C:Documents and SettingsИмя пользователяLocal SettingsApplication DataOperaOperacachesesn. А в Windows7 кэш содержится в папке C:UsersИмя пользователяAppDataLocalOperaOperacachesesn.

Полезный совет

Для Internet Explorer папку с интернет-файлами можете найти через проводник - отыщите на компьютере папку, которая так и называется - Temporary Internet Files.

Кэш браузера Mozilla Firefox находится в папке Default. Вы можете найти ее через путь C:\Users\Имя пользователя\AppData\Local\Mozilla\Profiles\xxxxx.default.

Источники:

  • Как очистить кэш и историю браузера
  • как найти кэш браузера

Вы часто смотрите фильмы и ролики онлайн. Хочется их каким-то образом сохранить. Бывает так, что ресурс, на котором вы их смотрите, не допускает скачивания. Это не помеха, ведь можно сохранить их на жестком диске вашего компьютера, используя кэш браузера. Как это сделать, читайте далее.

Инструкция

Запустите браузер. Затем перейдите на сайт, где вы смотрите ролики или . Чтобы скопировать кэш, нужно знать в какую папку он сохраняется. Откройте программу «Проводник» или альтернативную ей, например Total Comander. Перейдите в директорию, в которой установлен ваш браузер.

Найдите папку кэш. Все ролики, которые вы просматриваете в интернете, автоматически сохраняются в эту папку. По окончании просмотра, происходит их автоматическое удаление. Существует ошибочное мнение, что для содержания файлов в кэше браузера используются ресурсы оперативной памяти. Если речь идет о ролике длительностью примерно 20 минут, это логично, но когда вы смотрите фильмы, продолжительность которых может достигать и трех часов, то разумно было бы предположить, что данная информация, могла бы просто перегрузить оперативную память и привести к зависанию компьютера.

После того, как ролик или фильм будет полностью загружен, скопируйте его и переместите в другую директорию. Чтобы его потом можно было просмотреть, переименуйте его, присвоив в конце расширение swf. Данная подходит не только для копирования мультимедийного продукта, но и для любой другой информации, которая временно сохраняется в папке кэш.

Если у вас не получилось обнаружить эту папку вручную, проследите ее адрес с помощью настроек вашего браузера. Для этого нажмите на панели инструментов пункт «Справка», в нем выберите «О программе». Появится список. В нем выберите пункт «Блок пути». Затем, чтобы быстрее найти директорию, нажмите Ctrl+F и введите слово кэш. Затем нажмите кнопку Enter. В списке выберите пункт, который отражает месо нахождения ранее упомянутой папки на вашем жестком диске.

Мало кто знает о том, что на посещенные сайты можно зайти и в автономном режиме, открыв страницы, которые вы уже посещали, из кэша браузера. Однако, даже если человек помнит о наличии кэша, у него не всегда получается открыть посещенную когда-то страницу в оффлайн-режиме по причине невозможности поиска нужной страницы кэша. Если же вам хочется сохранить какой-то сайт, полностью просмотренный в сети, на компьютер, то перспектива извлекать все его элементы из кэша тоже радует далеко не всех. Тем не менее, есть хороший способ сохранять кэш браузера в виде сайтов – это программа HTML Converter 2.0.

Инструкция

Запустите HTML Converter и в разделе Cache type укажите тип вашего браузера. После этого в разделе Cache folder укажите путь , в которой содержится кэш. В последнюю очередь укажите destination folder – папку назначения, в которой будет сохранен результат работы.

Установите галочки у параметров Convert Java commands, links to local references, detect index pages.

Если вы хотите сохранить на жестком диске все сайты, имеющиеся в кэше, поставьте галочку на пункте «Загрузить все веб-сайты». Нажмите Convert и выберите в открывшемся окне те сайты из предложенного списка, которые вы хотите сохранить. Подтвердите нужные сайты и ждите результата.

Видео по теме

Источники:

  • Здрасте, как сохранять кэш музыки в ВК на сд карту?, Андроид

Веселее идти в путь, когда попутчик - опытный товарищ. Но как найти такого в неизвестной местности и не нарваться на неприятности? Слишком много развелось повсюду желающих заработать, не разбирающихся как следует в своем деле. А ведь от этого зависит безопасность.

Инструкция

Составьте перечень качеств идеального проводника . Для этого проанализируйте сделанные записи. Подумайте, что еще вы хотели бы . Например, вы желаете любоваться местными красотами в и потому проводник должен быть молчаливым. Или он непременно должен уметь оказывать первую , потому что вы не уверены, как подействует местный климат на вашего сына.

Обратитесь к неофициальным источникам информации. Можно поговорить с местными жителями. Хорошо бы найти туристов, которые ранее пользовались такими услугами. Получите от них контакты возможных проводников.

Сделайте окончательный выбор. Протестируйте каждого кандидата по вашему перечню идеального проводника . Можно устроить что-то вроде собеседований. Серьезно подходите к этому вопросу, чтобы не было разочарований.

Обратите внимание

Не перекладывайте всю ответственность на проводника. Позаботьтесь, чтобы о вашем пути знали родственники и служащие отеля, в котором вы остановились. В жизни бывают разные ситуации.

Будьте благоразумны и берите с собой все необходимое, даже если вас убедили, что путь абсолютно безопасен. Подумайте о запасе воды, пищи, о необходимых предметах на случай особых обстоятельств.

Полезный совет

Может оказаться, что вы проведете в дороге в 3 раза дольше времени, чем планировали. Что изменится для вас, если так случится? Смоделируйте эту ситуацию заранее, приведите в порядок необходимые дела, возьмите с собой дополнительные вещи. Мыслите так, будто вы сами - главный проводник.

Источники:

  • Где находится Проводник в Windows и для чего он предназначен

Кэш представляет собой временную память браузера, туда сохраняются картинки, анимации с загружаемых веб-страничек. Как найти эту информацию и где она хранится на компьютере?

Вам понадобится

  • - компьютер с доступом в интернет;
  • - браузер.

Инструкция

Найдите рабочую папку браузера. Кэш представляет собой обыкновенную папку, в которой хранятся временные файлы. Она и будет носить название cache. Если вы используете операционную систему Linux, откройте домашний каталог пользователя, перейдите в папку браузера. К примеру, если используется браузер Опера, папку с кэшем можно найти здесь: ~/.opera/cache/. Если используется Firefox стоит провести в папке mozilla/firefox/[случайный номер профиля].default/Cache/.

Откройте следующую папку, если используете операционную систему windows XP и браузер Опера, чтобы найти месторасположение кэша: C:\Documents and Settings\[имя пользователя]\Local Settings\Application Data\Opera\Opera [версия]\cache. Если у вас браузер Firefox, значит откройте адрес C:\Documents and Settings\[имя пользователя]\Local Settings\Application Data\Mozilla\Firefox\Profiles\[случайный номер профиля].default\Cache.

Зайдите в папку и вы увидите огромное количество файлов, которые названы бессмысленно и вам эти названия ни о чем не говорят. В файлах кэша нет расширений. Если вы используете операционную систему Linux, то большая часть файлов будет опознана файловой системой, и вы увидите соответствующие значки. В операционной системе Windows такого нет, поэтому вам будет сложнее опознать нужный вам файл из кэша. Но это можно выполнить не только по наименованию и расширения файла. Если вы хотите найти кэш, чтобы вытащить из него картинку или видеозапись, зайдите в папку, в которой он хранится, сразу же после просмотра изображения или видеозаписи на веб-страничке. В папке с кэшем выставьте режим просмотра «Таблица» и отсортируйте информацию по дате изменения. Также можно выполнить сортировку по размеру. Обычно временные файлы очень маленькие, а нужные вам, к примеру, изображения или видеозаписи, будут весить значительно больше.

Используйте инструменты браузеров, к примеру, введите в адресной строке браузера Opera команду Opera:cache, и он будет представлен на экране. Здесь произведите поиск по нужным критериям (тип файла, размер). Также будет отображен источник данного файла. Для того чтобы просмотреть кэш в браузере Mozilla Firefox, наберите в адресной строке команду about:cache.

Обратите внимание

Ответ: а)в браузере Internet Explorer щёлкнуть правой кнопкой мыши по значку IE на рабочем столе, нажать "Свойства" и нажать на кнопку "Удалить файлы". б)в браузере Mozilla FireFox в меню нажать Инструменты => Настройки, вкладка "Дополнительно", далее "Сеть" и "Очистить кэш".

Полезный совет

Кэш браузера - это копии веб-страниц, уже просмотренных пользователем. При попытке повторного просмотра этих страниц браузер (или прокси-сервер) уже не будет запрашивать их с веб-сервера, а извлечет из кэша. Применение кэша снижает нагрузку на сеть и повышает скорость загрузки страниц. Более подробную информацию о кэше браузера вы сможете найти в Яндексе.

Папка кеш является промежуточным буфером обмена с оперативной памятью. Посредством кеш а осуществляется быстрый доступ к необходимым данным операционной системы и улучшается общая производительность компьютера.

Инструкция

В операционной системе Windows существует специальная папка Тemp. Она находится на диске С:WindowsTemp, это папка для хранения временных файлов системы. Эти файлы можно удалять вручную, но грамотнее это с помощью специальной программы, например CCleaner.

Существует также файл подкачки, который, по сути, является кеш ем системы. Он используется, когда не хватает оперативной памяти. Получить к нему доступ обычному пользователю невозможно и нет необходимости. Свой кеш есть также , доступ к нему невозможен.

Каждый браузер использует свою кеш папку . В нее сохраняются различные элементы посещаемых вами веб-страниц. Это могут быть картинки, флеш-анимация и т.п. Сохранение осуществляется для того чтобы ускорить все последующие загрузки данных страниц.

Периодически кеш папки браузеров необходимо очищать. Это можно делать вручную, либо поставить соответствующие настройки в программе, чтобы очищение происходило при закрытии браузера.

Во встроенном браузере Windows – Internet Explorer папка кеш а находится по адресу: C:Documents and SettingsПользовательLocal SettingsTemporary Internet Files.



Понравилась статья? Поделиться с друзьями: