Как работает холодильник простыми словами. Как работает холодильник. Принцип работы бытового холодильника

Как известно главная функция холодильника это охлаждение продуктов и напитков.

Раньше холодильники выглядели достаточно не привлекательно, а также не всегда вписывались в интерьер. Их функциональность и вместительность также была очень ограничена и оставляла желать лучшего.


Старые модели холодильников

Сейчас же ситуация изменилась и теперь уже холодильники являются чуть ли не самой главной деталью в интерьере. Функциональность холодильников с каждым годом становиться более объёмной, а вместительность постоянно оптимизируется в том числе из счёт уменьшения основных узлов холодильника, таких как компрессор и т.д.

Современные модели бытовых холодильников


Единственное остаётся неизменным, это обслуживание и , но для выполнение ремонта необходимо знать его устройство и принцип работы.

Принцип работы холодильника.

Принцип работа любого холодильника в том числе и бытового, основана на принципе изменения состояния жидкости, лёд в воду, вода в пар а пар в лёд и так далее по кругу.

Рис.1 Принцип работы холодильника

Как показано на рисунке №1, принцип основан на движении хладагента от конденсатора к капилляру, от капилляра до испарителя, от испарителя до компрессора, а от компрессора к конденсатору. При прохождении хладагента по кругу, он подвергается высокому и низкому давлению в следствии чего изменяется его состояние.

Основные узлы и детали холодильника:

  • Компрессор - основной элемент в каждом холодильнике это его, который выполняет закачку и перегон хладагента (фреона) в конденсатор, а также высасывает из испарителя пары хладагента (фреона). Хладагент (Фреон) - газ (без цвета и запаха), При воздействии на него температуры или давления он изменяет свои свойства.
  • Конденсатор - артерия холодильника она представляет собой металлическую трубка с малым внешним диаметром, приблизительно 5 мм. Как правило она исполнена в виде змейки. Она соединена с тонкими металлическими прутиками по всей ширине через каждые 10-15 мм. В системе конденсатора происходит сжатие фреона, после чего он приобретает жидкое состояние. Также в конденсаторе или возле него крепят фильтры-осушители - устройство на вид цилиндр, концы которого заужены. Его основное назначение - сушка фреона, а также задержка и фильтрация мусора, который образуется процессе эксплуатации.
  • Испаритель - Несёт в себе одну из основных функций. За счёт того что в него осуществляется впрыск фреона после чего в последствии и происходит охлаждение фреона до низкой температуры. Всю систему испарителя называют агрегатом холодильника.
  • Реле - пускозащитное реле обычно размещено на компрессоре или возле него. Принцип работы реле холодильника для запуска и обеспечения работы компрессора, а также служит для защиты от перегрузок сети.
  • Термометры - сейчас их называют блоком управления, обычно такие блоки сочетаются индикацию температуры, замораживания и размораживания, ледоколом и многим другим. Его основное назначение это контроль и информирование о работе холодильника и работе всех его функций.
  • Предохранители - размещаются обычно рядом с блоком управления и зачастую они подключены к термометрам и другим датчикам. Служат они для защиты всего блока управления и всех электронных устройств холодильника от перенапряжения или скачков напряжения в сети.
  • Полки - полки, как может показаться на первый взгляд что основной функции в работе холодильника они не несут, но это не так. Они выполняют роль изоляционных перекрытий для морозильных камер для сдерживания холода внутри морозильных камеры.
  • Уплотнители - резиновые прокладки с магнитными держателями. Служат уплотнители для герметизации отсеков холодильника от внешнего воздействия и препятствуют попаданию воздуха во внутрь камер.
  • Крыльчатки - выполняют функцию обычного вентилятора или вытяжки. Она регулирует воздухообмен и циркуляцию воздуха в камере холодильника.
  • Лампы - обеспечивают освещение для удобного использования холодильника в ночное время.

Необходимо отметить что вся система соединена между собой медными трубками - которые осуществляют подачу хладагента (фреона) из одного устройства в другое.

В однокамерных устройствах охлаждение камеры осуществляется от главного испарителя, который находится в верху холодильного шкафа. Охлажденный воздух с испарителя поступает вниз и понижает температуру в холодильной камеры. Для того, что бы не было резкого понижения температуры, под главным испарителем расположен поддон с маленькими отверстиями, через которые охлажденный воздух от испарителя попадает в холодильную камеру. Открытием и закрытием этих отверстий мы можем изменять температуру в холодильной камере. Из курса физики мы знаем, что холодный воздух всегда поступает вниз, и поэтому в однокамерных холодильниках морозильная камера находится всегда сверху.


Упрощенная электрическая схема холодильника

Холодильный агрегат в однокамерном устройстве работает по следующей схеме: компрессор откачивает пары холодильного агента из испарителя и нагнетает их в конденсатор, где они и охлаждаются, конденсируются и в конечном итоге переходят в жидкую фазу. Далее эта жидкость через фильтр-осушитель и капиллярные трубки поступает в испаритель где вскипает и начинает забирать тепловую энергию от поверхности испарителя, то есть охлаждая содержимое холодильника. Холодильный агент выкипает и превращается в пар во время прохождения через испаритель, который по той же самой схеме откачивается компрессором. Алгоритм циклично повторяется до момента времени, пока температура на поверхности испарителя не станет заданной, после чего термореле отключит компрессор.


Схема холодильника принцип работы

Под действием внешнего климатического воздействия температура в морозильной камере увеличивается, и термореле опять подключает компрессор. Работая по такой схеме, внутри холодильника держится постоянная температура. Для профилактики образования конденсата на поверхности трубопроводной системы по всей его длине устанавливается капиллярная трубка. Во время работы капиллярная трубка нагревается, тем самым нагревая трубопровод всасывания. В современных моделях капиллярная трубка располагается внутри трубопровода всасывания.

Двухкамерный аппарат в отличии от однокамерного брата имеет два отдельных испарителя для холодильной и морозильной камеры, разделенных теплоизолирующей перегородкой.


Упрощенная электрическая схема холодильника (двухкамерный)

Принцип работы двухкамерного следующий: холодильный агент закачиваемый компрессором, через капиллярною трубку, поступает на испаритель морозильной камеры, где вскипая и испаряясь, начинается процесс охлаждения поверхность испарителя. До-тех пор пока испаритель морозилки не обмёрзнет до минусовых значений, в другой испаритель находящийся в холодильной камере холодильный агент поступать не будет.

Как только испаритель в морозилке обмерзнет жидкий холодильный агент начнет поступать в испаритель холодильной камеры, понижая его температуру до минус 14°С, после чего термореле, отключит компрессор.А включение компрессора произойдет, также автоматически после нагрева испарителя до определённой температуры.

Компрессор – это сердце любого холодильника или морозильника. Если с ним возникли проблемы, то и холодильник работать точно не будет. У рядового потребителя возникает вопрос. Можно ли в домашних условиях проверить его? Оказывается, не только можно, но и нужно. Главное, чтоб для этого у вас были нужные знания и прямые руки.


Рассмотрен и описан схемотехнический принцип работы термостата, а также варианты замены сгоревшего регулятора температуры на его простые самодельные аналоги.

В рассмотренных выше принципах работы компрессора есть один существенный недостаток - компрессор работает на полную мощность, и даже несмотря на то, что он периодически отключается термореле общее энергопотребление значительно выше, чем у инверторных компрессоров

Принцип работы компрессора инверторного типа следующий: При подаче электропитания холодильник быстро набирает заданную температура охлаждения, а затем с помощью плавного изменения мощности компрессора держится требуемая температура, при этом инверторный компрессор не выключается, а уменьшает лишь количество циклов работы компрессора в единицу времени, а температура внутри холодильной камеры поддерживается постоянной.

Устранение неисправности дело серьезное, но любой радиолюбитель способен произвести несложный ремонт своими руками, и даже заменить некоторые вышедшие из строя узлы альтернативными радиолюбительскими конструкциями.


Иногда так случается, что подойдя к холодильнику рано утром, вы понимаете, что забыли плотно закрыть его дверь вечеро. Холодильник за ночь разморозился, и некоторые продукты для профилактики отравлений лучше отправить в мусорный бак. Чтобы этого избежать предлагаю собрать звуковой сигнализатор, и спустя какое-то время устройство само напомнит вам, чтобы дверь открыта. Конечно, в некоторые новые модели холодильников эта функция уже встроена, но старые прекрасно работающие бюджетные модели необходимо модернизировать, установив, как вариант, данную схему детектора.

Во многих моделях современных холодильников двери открываются с правой стороны. Но периодически появляются ситуации, в которых требуется изменить этот принцип и выполнить перевешивание дверей холодильника на противоположную сторону.

Отсутствие подсветки в холодильнике – приносит кучу неудобств, особенно в темное время суток. В старых холодильных устройствах применялись типовые лампы накаливания малой мощности, единственным их минусом была генерация тепла. В современной кухонной техники вместе с классическими лампами накаливания применяются люминесцентные и светодиодные лампы. Эти виды ламп куда более энергоэффективны и генерируют холодный белый свет, а главное почти не нагреваются. Но даже их приходится периодически заменять на новые, а чтоб правильно это сделать, следует ознакомиться с этой статьей.

Все системы охлаждения современных холодильников можно поделить на три класса: статическое охлаждение, система No Frost и динамическое охлаждение. Именно эти три группы и являются основой любого холодильного устройства.

Статическое охлаждение

Другое название этой систему "Direct Cool". Принцип работы следующий. Когда работает компрессор, температура в камере снижается за счет отбора тепла испарителем, который размещен в задней стенке корпуса. Температура задней стенки низкая и вся влага начинает конденсироваться и замерзать на ней. Когда температура снижается до заданного пользователем уровня, компрессор отключается. Через некоторое время замерзшие капли влаги на стенке начинают таить и стекать через специальное отверстие в контейнер, расположенный снаружи холодильника. Когда температура увеличивается до максимальных значений заданным настройками терморегулятора и компрессор снова срабатывет и все повторяется в той же последовательности. Температура в морозильной камере всегда находится в отрицательном диапазоне за счет конструкционных особенностей и площади испарителя.

Размораживание в холодильных устройствах со статической системой охлаждения называют ручным. Под размораживанием понимают только процесс разморозки морозильной камеры, так как из-за постоянной отрицательной температуры, влага постоянно намерзает на стенках камеры. В холодильной камере разморозка осуществляется автоматически.

Недостатком такой системы охлаждения является отсутствие равномерного охлаждения по всему объему. Интенсивность охлаждения в статических системах самая низкая. Достоинством является максимальное сохранение влаги продуктов.

Охлаждение No Frost

Система может работать без разморозки все время пока не сломается. Принцип ее работы следующий - т.к испаритель в таких холодильниках открыт, то воздух в камере контактирует с ним. В основу охлаждения No Frost лежит принудительная циркуляция воздуха в холодильной камере через испаритель. Во время работы компрессора воздух вентилятором прогоняется через испаритель, который забирает тепло и обладает достаточно низкой температурой. Вся влага, которая находится в воздухе, мгновенно замерзает на самом испарителе. За счет этого и не происходит наледи. Когда компрессор отключается достигая заложеного уровня температуры, влага на испарителе тает сама и выводится по специальному дренажному каналу. Аналогичный процесс идет и в морозильной камере.

Вместе с этой системой используется понятие многопоточной системы охлаждения Air Flow или Multi Air Flow. Отдельно в собственную систему охлаждения ее выделить нельзя, так как это система циркуляции всего лишь повышает эффективность охлаждения. Достоинством систем No Frost является отличная эффективность охлаждения. Так как распределенный воздушный поток образует одинаковую температуру в любой части холодильной камеры.

Из недостатков продукты в таких холодильниках частично теряют свою влагу и их желательно хранить в контейнерах.

Динамическое охлаждение

На самом деле это усовершенствованная статическая система но с определенными усовершенствованиями, в виде вентилятора камере. Принцип работы такой же как и в случае со статическим охлаждением. А вентилятор, обеспечивает принудительную циркуляцию воздуха в камере.

Эта система сочетает в себе плюсы статической и No Frost системы, обеспечивая наиболее лучшие условия для хранения продуктов.

В современных конструкциях холодильников используются комбинации систем охлаждения из-за чего их нельзя рассматривать как с одной конкретной системой. Например, фирма Electrolux выпускает холодильники с системой Frost Free. Но в оригенали это комбинация статической системы в холодильной камере и No Frost в морозилке.

Немало копий поломано разъяснением принципа выработки холода, но решили сегодня послать очередное войско. Авось, не пройдут материал даром, старания понапрасну. Принцип работы холодильника основывается на способности фреона легко менять агрегатное состояние, отдавая, забирая тепло. Не всегда использовался этот класс веществ. Применяли аммиак, другие агрессивные среды. В 30-х годах прошлого века открыли фреоны, относительно безопасные для человека, эффективные. В результате другое сегодня забыто, хладагенты называются цифрами, маркируемыми префиксом R. Сегодня мир осваивает изобутан, концентрации рабочие малы, безопасность для озонового слоя велика. Правда, вещество взрывоопасно. Обсудим принцип работы холодильника.

Холодильник после магазинного рандеву

Как работает холодильник

Начнем обсуждение принципов работы холодильника компрессором. Сердце! Главное здесь. Мотор холодильника обычно стоит асинхронный, поэтому для работы часто требуется пускозащитное реле. В обязанности устройства входит подключение пусковой обмотки, только на время старта. Нагревается внутренняя биметаллическая пластина, конденсатор отключается от пусковой обмотки, функционирует единственно рабочая. По схожей системе работает защита против перегрева: двигатель холодильника работает слишком долго, тепловой эффект тока разгибает очередную биметаллическую пластину, рвущую контакт, давая обмоткам отдохнуть.

Такая схема позволит работать холодильнику эффективно, обеспечит неплохой пусковой момент. Понятно, внутри прибора фреон, который не то чтобы с удовольствием циркулирует по контуру, поршень требует затраты некоторых усилий. Здесь помните:

Из холодильника изымается мотор — пускозащитное реле идет в комплекте. Нельзя брать другое реле, другого двигателя, с высокой степенью вероятности нарушает нормальную работу, рано или поздно вызывает сгорание обмоток.

У двигателей холодильников индивидуальные пусковые требования. Мощность также отличается, следовательно, тип, нагрев биметаллической пластины реле не остаются постоянными. Написаны специальные справочники, где посмотрим, какие двигатели холодильников бывают, какие типы реле соответствуют. Кстати, на сайте выкладывали перечень, надеемся, порадовал читателей. Современные двигатели холодильников обладают инверторным управлением, коленвала больше не содержат. Движение вала линейное, прилепили остряки названный эпитет компрессорам.

Внутри находится катушка, снабженная сердечником, движущимся поступательно согласно закону переменного тока, подаваемого на проволоку. Несмотря на кажущуюся несуразность (сходство с электробритвами) моторы, как показывает практика, максимально удовлетворяют целям. Кроме того наиболее эффективно реализуется инверторное управление, помогая снизить уровень шума, продлить жизнь. Недаром Samsung дает 10 лет гарантии на моторы холодильников. Напомним:

В результате появляется следующая схема:

  1. Входное напряжение выпрямляется.
  2. Нарезается силовым ключом нужными длительностями.
  3. Работой заправляет генератор тактовых импульсов.

Простейшая схема, скорее относящаяся к импульсному блоку питания, суть равно остается: присутствует напряжение 50 Гц, затем становящееся напряжением другой частоты. Результатом видим изменение скорости движения поршня, отчего фреон начинает двигаться ускоренно, замедленно. Что это дает?

Фреон холодильников

Сердце перекачивает кровь, компрессор - фреон. Смысл: требуется создать высокое давление на конденсоре (на задней стенке холодильника), низкое на испарителе. В результате на первом начинает сжижаться хладагент, со второго активно испаряется. В первом случае выделяется большое количество тепла, которое достается кухне, во втором случае поглощается энергия, конфискуемая из холодильного отделения. В результате холодильник морозит. Быстрее движется кровь, бодрее самочувствие человека, больше разница перепадов давлений конденсор-испаритель, больше холода, а значит — компрессору придется попотеть.

Встроенный таймер холодильника

Итак, показали зависимость выработки холода от скорости работы компрессора, теперь рассмотрим методику получения разницы давлений. Знаете, Ютуб крутят ролик: человек в ластах осваивает водный стадион. Забегает достаточно далеко от берега. Быстрота бега первый фактор, вторым назовем увеличенную площадь опоры. В холодильнике ситуация аналогичная. Резвое кручение ротора двигателя бессильно фреону обеспечить нужную разницу давлений. Бессильно напрямую — помогает важное дополнение жилам циркуляции хладагента, капиллярная трубка. Ход очень тонкий, ставится после конденсора. В результате давление здесь быстро растет, фреон разом становится жидкостью. Моментально отдает энергию. Формируется принцип действия холодильника.

Какое-то тепло набрано испарителем. Не поверите, в вакууме испаряется даже вода, лед улетучивается… сублимация. Подобный процесс идет за задней стенкой морозилки (холодильной камеры), где создается компрессором разрежение. Жидкий фреон понемногу втекает через капиллярную трубку и улетучивается. Даже при малой температуре, которая царит в испарителе, умудряется отобрать тепло замерзшего металла. В связи с этим пора упомянуть одну деталь, без которой устройство холодильника никак неполно. Фильтр-осушитель (иногда называют ресивером).

Фильтр-осушитель холодильника

Итак, видим близ конденсора высокие температуры — вода быстро становится паром. Откуда берется во фреоновом контуре, остается загадкой даже для мастеров, однако известно доподлинно: без жидкости половина ремонтников холодильного оборудования лишится работы.

Полезная жидкость, пытаясь покинуть капиллярную трубку, образует ледяную пробку, намертво закупоривающую работу агрегата. Если помните, давление по эту сторону невысокое, вакуум не может прошибить нарост кристаллов застывшей влаги.

В результате получается, компрессор работает на полную катушку, разница давлений между конденсором и испарителем невероятная, толку — нуль, фреон не циркулирует. Некому переносить тепло с места на место.

Характерная особенность неисправности в этом случае, что неполадка пропадает, если выключить холодильник на время. Затем коллизия начинается сызнова. Вызвано тем, что пробка тает, нарастая снова. Поэтому фильтр-осушитель трудится возле конденсора, забрать побольше воды. Внутри находится тривиальный силикагель, многим знакомый по ботинкам, одежде. Пакетики, заполненные шариками, забирающие влагу. Постепенно фильтр-осушитель вырабатывает ресурс, пары воды продолжают третировать фреоновый контур холодильника. Кстати, при перезаправке деталь подлежит обязательной замене.

Фильтр-осушитель выглядит утолщением медной трубки, которое невозможно не заметить. Однако частенько укрыт слоем пенополиуретана. В этом случае к детали требуется еще пробиться. Все зависит от разновидности холодильников. Однако сложная система была бы грудой железа, не существуй термостата, занимающегося измерением условий камер, выдающего команду включения и выключения компрессора.

Термостат холодильника

Обычно термостат построен на основе измерения давления. Понятно, что холодный воздух тяжелее, следовательно, можно определить достаточно ли давит мембрану. Доступ к чувствительному элементу ведется через трубку. Винтом подтягивается натяжение мембраны. В результате получаем такие небольшие «карманные часы», у которых вместо цепочки длинная трубка. Лишний отрез укладывается между стенками, заборное отверстие проводится в рабочую камеру.

Современные термостаты гораздо более примитивны. Унылая термопара, от величины ЭДС которой зависит, что предпримет электронная плата холодильника в следующий момент. Понятно, такая схема в отличие от предыдущей требует наличия питания, что несколько усложняет процесс регулировки. Зато ремонт превращается в настоящее развлечение: главное найти термопару с подходящими характеристиками, не требуется драть половину холодильника, чтобы тянуть трубку. Упрощает жизнь мастеров.

Закончили рассказ про то, как работает холодильник, упомянули аспекты устройства прибора.

Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка. По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы. В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.

Кратко о типах оборудования

По принципу работы данное оборудование можно разделить на четыре вида:

  • Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
  • Абсорбционное, для работы использует не электрическую, а тепловую энергию.
  • Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
  • Компрессорное.

Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.

Компрессор для холодильника: принцип работы

Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.

Рис. 1. Принцип работы холодильной установки

Обозначения:

  • А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
  • B – Компрессорный аппарат.
  • С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
  • D – Капиллярная трубка, служит для выравнивания давления.

Теперь рассмотрим, алгоритм работы системы:

  1. При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
  2. Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
  3. Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.

Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.

Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.

Классификация компрессоров в холодильном оборудовании

Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:


У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.


Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.

  1. Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
  2. Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.

Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.

Устройство поршневого компрессора холодильника

Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.


При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления. Основные элементы поршневой конструкции представлены ниже.


Конструкция поршневого компрессора в виде схемы

Обозначения:

  1. Нижняя часть металлического кожуха.
  2. Крепление статора электромотора.
  3. Статор двигателя.
  4. Корпус внутреннего электромотора.
  5. Крепеж цилиндра.
  6. Крышка цилиндра.
  7. Плита крепления клапана.
  8. Корпус цилиндра.
  9. Поршневой элемент.
  10. Вал с кривошипной шейкой.
  11. Кулиса.
  12. Ползунок кулисного механизма.
  13. Завитая в спираль медная трубка для нагнетания хладагента.
  14. Верхняя часть герметичного кожуха.
  15. Крепление подвески.
  16. Пружина.
  17. Кронштейн подвески.
  18. Подшипники, установленные на вал.
  19. Якорь электродвигателя.

В зависимости от конструкции поршневой системы данные устройства делятся на два типа:

  1. Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
  2. Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).

В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.

Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.

Устройство роторных механизмов

Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.


Внутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.


Конструкция линейного роторного компрессора в виде схемы

Обозначения:

  1. Отводной патрубок.
  2. Отделитель масла.
  3. Герметичный кожух.
  4. Фиксируемый на кожухе статор.
  5. Обозначение внутреннего диаметра кожуха.
  6. Обозначение диаметра якоря.
  7. Якорь.
  8. Втулка.
  9. Лопасти.
  10. Подшипник на валу якоря.
  11. Крышка статора.
  12. Вводная трубка с клапаном.
  13. Камера-аккумулятор.

Устройство инверторного компрессора холодильника

По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.

Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения. В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии. Что касается остальных характеристик, то они остаются неизменными.

Однокамерные холодильники.

Однокамерные холодильники устроены довольно просто: компрессор, испаритель, пускозащитное реле и газо-механический датчик или электронный датчик (в зависимости от года производства).

Это, как правило, все однодверные холодильники с маленькой морозильной камерой внутри, она же и является основным источником холода для общей камеры (основной испаритель), так как по законам физики холодный воздух всегда опускается в низ, то у однокамерных холодильников морозильная камера всегда располагается в верху.

Работает это так:
Мотор-компрессор закачивает фреон в конденсатор, там он частично остывает и конденсируется, т.е. становится жидким. Затем, через патрон осушителя (фильтр) попадает в капиллярную трубку и, пройдя по ней, поступает в испаритель.

После поступления его в испаритель начинается физический процесс перехода его в газообразное состояние. Тем самым температура его меняется из плюсовой в минусовую, за счет чего охлаждается испаритель и в свою очередь температура в камере.
Газ пройдя весь испаритель попадает в мотор-компрессор в котором преобразуется опять в жидкое состояние и цикл повторяется вновь, до тех пор пока температура в камере не опустится до заданной, после чего терморегулятор отключит мотор-компрессор.

Под действие окружающей среды температура в камере начнет повышаться, терморегулятор почувствует повышения температуры, включит мотор-компрессор и цикл повторится.

Двухкамерные холодильники.

Двухкамерные холодильники устроены несколько сложнее однокамерных, расположение морозильной камеры возможно как верхнее так и нижнее, за счет того что в каждой камере установлен свой испаритель который охлаждает только объем своей камеры.
Так же двухкамерные холодильники бывают двух компрессорные, что дает возможность использование только одной необходимой в данное время камеры, камеры отгорожены друг от друга теплоизолирующей перегородкой, что исключает потерю холода, когда одна из камер отключена.

С одним компрессором раздельное использование камер не возможно, испарителя хоть и два, но в одно компрессорном холодильникеони замкнуты в одну цепь, у них один контур по которому циркулирует фреон. Работает одно компрессорный холодильник так: сначала охлаждается морозильная камера она всегда в приоритете, до тех пор, пока испаритель морозильной камеры не охладится до минусовой температуры фреон в холодильную камеру поступать не начнет. Отключение компрессора происходит по датчику испарителя холодильной камеры, после того как испаритель морозильной камеры полностью промерз, фреон начинает поступать в испаритель холодильной камеры, закачка фреона начинается с места входа капиллярной трубки а датчик всегда крепится на противоположном конце испарителя. Испаритель холодильной камеры охлаждается до минус 14 тогда датчик отключает компрессор, после отключения компрессора температура воздуха в холодильной камере под действием окружающей среды нагревается и нагревает испаритель, датчик чувствуя повышения температуры дает сигнал на включения компрессора и процесс повторяется вновь.

Двух камерные холодильники с двумя компрессорами значительно удобнее, позволяют использовать нужную вам камеру отдельно от той камеру в использовании которой нет необходимости оставляя ее выключенной, что в одно компрессорных холодильниках невозможно, это очень удобно и экономично.

С системой NO Frost.

Холодильники с системой NoFrost отличаются от холодильников с обычной системой охлаждения тем, что весь процесс охлаждения холодильной и морозильной камеры скрыт от пользователя. В таких холодильниках нет привычных полок в морозильной камере обросших снегом, нет намерзания инея на задней стенки холодильной камеры. Охлаждение камер в холодильниках с системой NoFrost происходит за счет обдува холодным воздухом. Возникает вопрос, откуда же берется этот холодный воздух? Работают такие холодильники так: холодильник с системой NoFrost имеет, как правило, один испаритель расположен он всегда в морозильной камере, расположение морозильной камеры может быть как верхнее, так и нижнее. Испаритель располагается за пластиковой обшивкой. За испарителем расположен вентилятор, который всасывает теплый воздух из камеры пропускает его через испаритель, тем самым охлаждая его и подает уже холодный воздух по специальным каналам в холодильную и морозильную камеру. За счет этой циркуляции воздух в камерах охлаждается до заданной температуры, в холодильной камере это +4, +6 градусов в морозильной -18 принято считать, что в холодильниках с системой NoFrost не образовывается снег и они не требуют размораживания, это не совсем так снег в таких холодильниках нарастает на испарители который скрыт от глаз пользователя, в испаритель в строен электрический нагреватель (тен) который один раз в 8-16 часов включает механический или электронный таймер (в зависимости от модели холодильника) и весь образовавшийся снег тает, а талая вода стекает по дренажной трубке в специальную емкость от куда испаряется. Весь этот процесс не требует вашего участия.



Понравилась статья? Поделиться с друзьями: