Домашний трансформатор напряжения. Как работает трансформатор

Что и зачем повышает трансформатор? И за чей счёт?

Мы уже рассматривали, что такое трансформатор, теперь давайте немного подробнее рассмотрим, что такое повышающий трансформатор и для чего он используется. Начнём с простого примера, который поможет понять, зачем нужны повышающие трансформаторы.

Возьмите фонарик и убедитесь, что батарейки не сели, и лампочка ярко горит. А теперь выкрутите голову фонарика, и запитайте лампочку через кабель длиной метров 50-т. Сделайте это сами, если не поверите нам, что лампочка не загорится. Происходит это по причине слишком больших потерь в линии для этого напряжения. Отметим слово «напряжение».

Примерно то же самое произойдёт в обычной линии между двумя городами, если в линии будет 220В. Если в такой электропроводке отсутствует трансформатор, повышающий напряжение, до второго города электричество не доберётся, оно всё уйдёт на потери. По причине этих потерь энергетики и используют схему, при которой после генерации электричества, значительно повышается напряжение в точке генерации, электричество по линиям высоких напряжений передаётся потребителю, где потом понижается до нужного значения и раздаётся потребителям.

Итак, очень грубыми мазками схема в этом случае выглядит так:

  • Генератор, вырабатывающий электроэнергию;
  • Повышающий трансформатор;
  • Линия передачи энергии;
  • Понижающий трансформатор;
  • Местные электросети;
  • Потребитель электроэнергии.

Для наглядности можно привести вот такую картинку:

Почему именно энергетика? Дело в том, что это основная сфера применения повышающих трансформаторов, если говорить об удельном вкладе трансформаторов в трансформацию электроэнергии. То есть именно в этой сфере они наиболее востребованы, и без них невозможно представить современные энергосистемы.

Для того чтобы понять, каким образом напряжение из 110В повышается до 220В, или меняются токи, нужно вспомнить о том, что закон сохранения энергии никто не отменял и никакого «дармового» электричества трансформатор не вырабатывает. Кстати, именно на манипулировании законами физики строится , стоит их воткнуть в розетку.

Как раз наоборот, повышающий трансформатор отлично иллюстрирует закон сохранения энергии. Почему? Да потому, что если рассмотреть трансформатор как замкнутую систему, то мы получим:

  • Входящую энергию (U1) на первичной обмотке (электричество), количество витков которой обозначается N1;
  • Индуцированное в магнитопроводе (сердечнике) переменное магнитное поле;
  • Исходящую энергию (U2) на вторичной обмотке, количество витков N2.

(Отношение U2 к U1 даёт параметр k, называемый коэффициентом трансформации.)

Так вот, если в этой системе количество витков будет одинаковым, то мы получим на выходе то же самое напряжение, минус потери в самом трансформаторе. Это первая иллюстрация. Вторая заключается в том, что если количество витков будет различаться, то мы получим на выходе напряжение выше или ниже, но при этом в замкнутой системе «трансформатор» мощность останется одинаковой на входе и выходе (минус потери в самом трансформаторе).

На заметку . Это стоит ещё раз обдумать. Некоторые эффекты в электротехнике кажутся неспециалистам чудом, но все эти эффекты всегда точно соответствуют закону сохранения энергии. Поэтому прежде чем думать, как выбрать и куда установить прибор, «который точно сэкономит много денег», вспомните про этот пример.

Таким образом, повышающий трансформатор работает в строгом соответствии с законами сохранения энергии и электромагнитной индукции в сетях переменного тока, изменяя напряжение и токи, но не изменяя мощность.

А можно ли заменить трансформатор?

Виды, типы и сферы применения трансформатора повышающего напряжения найти в сети не просто, а очень просто. Пробежимся, чтобы не искать:

  • По фазности (одна или три);
  • По обмоткам (две или три (разновидности с расщеплённой обмоткой)). Однообмоточные тоже есть, это автотрансформаторы;
  • По изоляции (масляные, сухие и с негорючим заполнением);
  • По роду охлаждения (масляное – естественное, с воздушным дутьём и с принудительной циркуляцией, воздушное и при помощи азотной подушки).

Маркировка повышающих трансформаторов (точнее всех трансформаторов) выглядит так:

Все эти приборы хорошо описаны, распространены и имеют самые разные сферы применения: от крупной энергетики, до очень небольших бытовых приборов.

На самом деле, большинство трансформаторов, повышающих напряжение, заменить другими приборами просто невозможно, но, тем не менее, как сказал классик – «Незаменимых людей нет» (с).

Изменить в электросети напряжение или токи можно и другими способами, причём потери окажутся сравнимыми, а в ряде случаев даже ниже. Один из примеров это так называемая Т-образная схема трансформации:

Может показаться, что это, собственно говоря, и есть схема трансформатора, повышающего или понижающего. Но на самом деле разница вот в чём:

Это как раз схема трансформатора, из которой прекрасно видно, что обмотки между собой никак не связаны, и ток во вторичной обмотке индуцируется без участия проводов, если можно так выразиться. А вот в Т-образной схеме замещения трансформатора хорошо видно, что разрыва проводов нет.

При этом, мы так же, как в повышающем трансформаторе получим различные напряжения U1 и U2. Такие способы применяются там, где использовать обычный трансформатор, повышающий напряжение не представляется возможным. Так что, трансформатор можно собрать своими руками и подключить там, где надо, если есть такая необходимость.

На правах заключения несколько слов о судьбе трансформаторов

Не думайте, что мы решили удариться в фантастику, мы люди практичные и реалисты. Но, тем не менее, сегодня в плане генерации дело обстоит таким образом, что вполне возможно, трансформаторы через десяток лет не будут иметь такого широкого применения. Пример чуть выше, это только один из вариантов, но главное не в этом.

Конечно, они будут служить ещё десятки лет, но в главной сфере использования - энергетике, повышающий трансформатор нужен только как вторичный, вспомогательный прибор. И нужен он только для передачи электроэнергии на большие расстояния. Однако уже сегодня видно, что за последние 30-ть лет фокус этого применения всё больше смещается в сторону крупных предприятий. Если 30-ть лет назад частный дом, не подключенный к электросети, был экзотикой, то сегодня есть уже целые посёлки, которые никак не используют сети общего назначения. Более того, эти посёлки сами являются генерацией, подпитывая энергосистемы излишками энергии.

Это прогресс и процесс, который им однажды запущен, обязательно придёт к логическому завершению. Лампа накаливания, пожалуй, один из первых приборов, получивший широкое распространение, и ещё 50-ть лет назад многим казался вечным атрибутом системы освещения. Но процесс идёт и уже через десяток лет это будет анахронизм. Не считайте это лирическим отступлением, это относится поголовно ко всем электроприборам. Именно по этой причине мы так насторожено относимся к новинкам, часть из которых откровенное надувательство, а часть тупиковые ветви эволюции, как, например .

Одна из задач, которую пытается решать наш коллектив авторов, это как раз попытаться спрогнозировать, оценить на уровне инстинкта, если угодно, какие из новинок займут достойное место в наших домашних электросетях, а какие останутся дорогими игрушками и бесполезной тратой денег. Мы, конечно, можем ошибаться, но будем стараться аргументировать своё понимание этих вопросов, особенно в краткосрочных перспективах.

Повышающие трансформаторы представляют собой силовые конструкции, предназначенные для монтажа в электрических бытовых и производственных цепях. Установка меняет напряжение в сторону повышения. Как работает повышающий тип трансформаторов, где используются такие установки, нужно рассмотреть подробнее.

Функционирование

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается. Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Принцип устройства

Рассматривая, как работает трансформатор повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции. Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.

Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.

При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.

Разновидности

  1. Автотрансформатор. Обладает одной совмещенной обмоткой.
  2. Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
  3. Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
  4. Заземляемый. Обмотки соединяются звездой или зигзагом.
  5. Пик-трансформаторы. Отделяют постоянный и переменный ток.
  6. Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.

Представленные конструкции отличаются мощностью и техническими характеристиками.

Другие виды

В соответствии с рабочими характеристиками представленное оборудование различается еще по нескольким признакам. По количеству контуров бывают однофазные (бытовые) и трехфазные (промышленные) конструкции.

В качестве охладительной системы применяются разные субстанции. Различают масляные и сухие разновидности. В первом случае оборудование стоит дешевле. Масло является пожароопасным веществом. При их использовании предусматривается качественная защита от аварии. Сухие агрегаты заполнены негорючим веществом. Они стоят дороже, но требования по их установке лояльные.

Циркуляция охладителя в системе может быть принудительным или естественным. Существуют конструкции, в которых эти методы комбинируются. Многообразие видов позволяет каждому подобрать оптимальный тип устройства.

Маркировка

Производителями разработана специальная маркировка представленного оборудования. Это позволяет потребителям и проверяющим легко определить разновидность оборудования.

В общем виде обозначение выглядит так - ТМ/Н – Х , где:

  • Т – обозначение типа прибора;
  • М – мощность агрегата, заданная производителем, кВА;
  • Н – класс напряжения со стороны обмотки высокого напряжения (ВН);
  • Х – климатическая характеристика, определяющая особенности размещения в соответствии с ГОСТ 15150.

Маркировка может включать в себя и другие характеристики. Табличка с указаниями параметров прибора устанавливается на его корпус. При установке оборудования информация с маркировкой должна находиться в доступном для визуального осмотра месте. Подробнее о маркировке трансформаторов читайте .

Ремонт и обслуживание

Трансформатором называется сложное оборудование. Периодически потребуется проводить его обслуживание и . Доверить эту работу рекомендуется профессионалам. Только человек с соответствующей подготовкой имеет право проводить подобные работы.

При повышенной скорости нагрева, наличии шума, требуется произвести перемотку контуров трансформатора. Эту процедуру сможет выполнить неквалифицированный специалист, обладающий минимальным уровнем знаний в области работы электротехники.

Прибор имеет магнитопривод. Он является общим для катушек. Первый контур ответственен за понижение, а второй – за повышение электричества в сети. Осмотр трансформатора производится по определенной технологии.

Проверка

Сначала проводится визуальный осмотр блока. Если при работе наблюдается перегрев, на поверхности появляются деформации, неровности, вздутие изоляции. Если осмотр не выявил отклонений, нужно найти вход и выход прибора. Первый из них подведен к первой катушке. Здесь появляется магнитное поле в момент подачи электричества. Вывод подведен ко вторичной обмотке.

Выходной сигнал фильтруется. Этот показатель нужно замерять. Снимаются разборные части конструкции корпуса. Требуется получить доступ к микросхемам. Это позволит замерять напряжение мультиметром. При этом потребуется учесть номинальные показатели. Если результат замеров окажется меньше 80 % от заданного производителем значения, цепь первичной не функционирует правильно.

Первую катушку отсоединяют от прибора. На нее больше не поступает электричество. Затем проверяется вторичный контур. При отсутствии фильтрации используется питание от измерительного прибора. При отсутствии нормального напряжения в системе, аппаратура требует ремонта.

После проверки в случае исправности составляющих элементов, конструкция собирается обратном порядке. При необходимости проводится ремонт агрегата.

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях. Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Каждая область техники имеет свои знаковые устройства, глядя на которые однозначно понимаешь что, куда, откуда. Парус - это море, яхты, корабли. Пропеллер - авиация, самолеты, колесо - велосипед, автомобиль и т.д. И не всегда мы задумываемся над тем, что когда-то эти ныне простые и такие понятные устройства были очередным, иногда трудным, шагом в становлении целой отрасли техники или машиностроения.

Такая история и у хорошо известного представителя электротехники - трансформатора. В далеком уже 1831 году Фарадей вошел в историю открытием электромагнитной индукции - основного Только через 45 лет русскому ученому П. Н. Яблочкову был выдан патент на изобретение трансформатора. Две обмотки, расположенные на незамкнутом сердечнике, подтвердили возможность трансформировать, т.е. преобразовывать, изменять токи и напряжения. Самым первым был изготовлен повышающий трансформатор. Современные трансформаторы имеют размеры от сооружений в несколько этажей до крохотных изделий меньше 1 см, а их производство - это ведущая отрасль электротехнической промышленности.

В технике применяется огромное число трансформаторов различного назначения и каждый из них имеет свое специфичное название. Например, широкое применение в электролабораториях имеет повышающий который при выходном напряжении в несколько киловольт имеет напряжение питания 220 В.

Итак, трансформатор - что же это такое? Классическое определение звучит так: трансформатор - это электрическая машина, преобразующая ток входного источника питания в ток вторичной обмотки с другим напряжением. Трансформатор работает с напряжением переменного тока, т.к. эффект индукции проявляется только при изменении Передача (трансформация) энергии проходит через преобразование электрической энергии в обмотках сначала в магнитное поле, и далее - переход обратно в электрическую энергию тока, но уже во вторичной обмотке. Если вторичная обмотка по числу витков превышает первичную, то имеем повышающий трансформатор, а если подключить обмотки наоборот, то и трансформатор будет «наоборот» - понижающий.

Допустим, что необходимо в гараже, имеющем электрическую сеть 36В, подключить электропотребитель, например, блок зарядки аккамулятора с питанием 220В - типичный случай для того, чтоб применить повышающий трансформатор. Решение такой практической задачи рассмотрим пошагово.

1. Мощность зарядного устройства возьмем из паспорта - скорее всего это будет что-то около 100 Вт. Понимая, что всегда нужно иметь запас на будущее и с учетом КПД будущего трансформатора примерно 0,9, принимаем мощность первичной обмотки 150 Вт.

2. Выбираем магнитопровод. Легче всего достать О-образный магнитный сердечник (от старого телевизора). Для нас подойдет любой, у которого сечение не меньше, чем следует из соотношения: Р1= S*S/1,44 , где Р1 и S - мощность трансформатора в Ваттах и поперечное сечение сердечника в см кв. Расчет дает значение S=10,2 см2.

3. Следующий шаг самый важный при «строительстве» трансформатора - определяется количество витков на 1В: N= 50/S = 50/10,2 = 4,9 витков/В. Теперь совсем легко рассчитать количество витков(или, как говорят, «намоточные данные»), первичной и вторичной обмоток: W1=36*N=176 витков и W2=220*5= 1078 витков.

4. Определим токи обмоток. Исходим из того, что мощность каждой из обмоток примерно В таком случае, рабочие токи обмоток: J1 = 150/36=4,2А и J2 = 150/220=0,7А.

5. Теперь есть все данные для определения диаметров проводов обмоток. Так и сделаем: для первичной обмотки d1=0,8*√J1=0,8*2,05=1,64мм кв. ;

аналогично для вторичной обмотки d2=0,8*√J2 = 0,8*0,84=0,67 мм кв.

Для намотки обмоток выбираем диаметры, ближайшие из стандартных.

Все! Расчет окончен, но можно ли изготовить повышающий трансформатор своими руками? Как говорится - нет ничего проще, если сильно нужно. Реальная потребность - это основная движущая самоделкинами сила, так что дальше ручками, ручками.

6. Изготавливают два каркаса по выбранному магнитопроводу.

7. На каркасы плотной укладкой наматывают по половине первичной обмотки и изолируют ее стекло- или лакотканью.

9. Сборка магнитопровода, стяжка его частей хомутом - проблема не очень сложная. При сборке магнитопровода желательно его половинки склеить любым составом с применением ферропорошка - это позволит исключить «гудение» устройства при работе.

Вот и все! Наша самоделка, стоит думать, будет работать долго и в радость. А кто бы сомневался!

Вам понадобится

  • - отвертка;
  • - молоток;
  • - мультиметр;
  • - намоточный станок со счетчиком;
  • - обмоточный провод;
  • - паяльник, припой и нейтральный флюс;
  • - мегомметр

Инструкция

Убедитесь, что трансформатор является разборным. Если его сердечник собран склейкой лаком, или, тем более, сваркой, а также если прибор герметизирован любым способом, то для перемотки он непригоден.

У некоторых трансформаторов имеется несколько вторичных обмоток. Соединяя их последовательно, можно получать различные напряжения. Если некоторые из таких обмоток не задействованы, включив их последовательно с уже использующимися, можно повысить выходное напряжение , не прибегая к разборке трансформатора.Все перепайки выполняйте при отключенном питании. Если снимаемое напряжение после переделки не увеличилось, а уменьшилось, значит, дополнительная обмотка подключена в неправильной фазировке. Поменяйте местами ее выводы.

Убедившись в том, что трансформатор имеет разборную конструкцию, можно приступить к его разборке. Сняв крепление сердечника, разберите его легкими ударами молотка, запоминая расположение пластин.Освободив катушку от сердечника, намотайте на нее измерительную обмотку, имеющую несколько десятков витков. Изолируйте ее, выводы вытащите наружу, после чего соберите трансформатор.

Подключите к измерительной обмотке мультиметр, работающий в режиме измерения переменного напряжения, подайте на первичную обмотку трансформатора номинальное напряжение питания. Разделив число витков измерительной обмотки на измеренное напряжение, вы получите число витков на вольт.

Рассчитайте число витков новой вторичной обмотки, которую необходимо включить последовательно с имеющейся, по следующей формуле:Nдоп=(U2-U1)*(Nизм/Uизм), где:
Nдоп - искомое число витков дополнительной обмотки;
U2 - напряжение, которое необходимо получить;
U1 - напряжение имеющейся вторичной обмотки;
Nизм - число витков измерительной обмотки;
Uизм - напряжение, снятое с измерительной обмотки.Снова разберите трансформатор, смотайте измерительную обмотку и вместо нее намотайте дополнительную. Используйте провод того же сечения, что и у имеющейся вторичной обмотки, при этом, следите, чтобы диаметр катушки не увеличился слишком сильно, иначе сердечник будет невозможно надеть. Если соблюсти это требование не получается, от переделки трансформатора придется отказаться.

Изолируйте дополнительную обмотку, соберите трансформатор, после чего включите новую обмотку последовательно с вторичной. Обеспечьте ее правильную фазировку способом, описанным выше.

После переделки трансформатора ни в коем случае не снимайте с него мощность, превышающую ту, на которую он был рассчитан изначально. Рассчитать эту мощность можно, умножив снимаемое напряжение на потребляемый ток.

С помощью мегомметра убедитесь, что утечка между первичной и вторичной обмотками, а также между каждой из них и сердечником отсутствует даже после длительного прогрева при номинальной снимаемой мощности. Удостоверьтесь, что в ходе испытания не появляются запах гари, дым.

Иногда случается так, что напряжение в сети несколько ниже того, которое необходимо для нормального функционирования приборов. Из этого положения есть выход. Повысить напряжение можно очень просто. Для этого достаточно элементарных знаний по электротехнике.

Вам понадобится

  • Трансформатор

Инструкция

Для того чтобы повысить напряжение , понадобятся простой по и трансформатор ( именно – станет ясно после некоторых нехитрых расчетов, указанных ниже). Итак, первичная обмотка трансформатора должна быть на , а вторичная его обмотка должна быть рассчитана на то напряжение , на которое как раз и нужно повысить напряжение в сети.

Теперь возьмите и проанализируйте следующие :Iн = Рн? Uн и P = U2 ? I2. При помощи первой формулы вычислите ток вторичной обмотки трансформатора. После того как в результате расчетов станет известна P, то по полученным результатам подберите трансформатор, наиболее подходящий по параметрам (мощность и выходное напряжение ).

Далее поработайте с этими формулами:Uвых = Uвх ± (Uвх? Ктр) и Ктр = U1 ? U2. Благодаря этим формулам становится понятным, что для правильного результата достаточно просто фазировать (первичной или вторичной).

Полученное устройство установите в таком месте, из которого оно не будет мешать, так как в процессе работы от трансформатора исходит довольно гул. Поэтому целесообразно устанавливать трансформатор где- в подвале или в подсобном помещении.

Видео по теме

Обратите внимание

Следует также учесть тот факт, что в случае стабилизации напряжения в сети и достижения его нормального значения (220 вольт), на выходе этого трансформатора все равно будет напряжение повышенное, что может привести к выходу из строя бытовых приборов. Поэтому для того, чтобы перестраховаться, используйте в процессе эксплуатации получившегося прибора специальные розетки, реагирующие на изменения напряжения в сети и способные в нужный момент отключить трансформатор от сети.

Источники:

  • как поднять напряжение в 2019

Очень сложно придумать что-либо более интригующее, нежели трансформатор Теслы . В свое время, когда автор данного изобретения – сербский ученый Никола Тесла – продемонстрировал его широкой публике, он получил репутацию колдуна и мага. Самое удивительное, что собрать трансформатор Теслы без особого труда можно у себя дома, а затем, при демонстрации этого агрегата, вызывать шоковое состояние у всех своих знакомых.

Инструкция

Для начала нам будет любой источник тока напряжения. Нужно найти генератор или трансформатор с напряжением не менее 5 кВ. Иначе эксперимент не получится. Затем данный источник тока необходимо подключить к конденсатору. Если емкость выбранного будет большой, то тогда также будет необходим мост. Затем нужно создать так называемый «искровой промежуток». Для этого нужно взять два медных провода, концы которых согнуть в стороны, а основание крепко обмотать изолентой.

Далее необходимо изготовить Теслы . Для этого нужно обмотать проводом любую круглую деталь без сердечника (так, чтобы посередине была пустота). Первичная обмотка должна состоять из трех-пяти толстого медного провода. Вторичная обмотка должна содержать не менее 1000 витков. В итоге, должны получиться катушки в форме чечевицы.

Затем необходимо подключить провода к первичной обмотке катушки, а также источнику . Самый простой трансформатор Теслы готов. Он сможет давать разряды не менее 5 сантиметров, а также создать «корону» вокруг катушек. Стоит только отметить, что явления, создаваемые трансформатор ом Теслы , пока не изучены. Если же вы изготовили трансформатор Теслы , который дает разряды до одного , то ни в коем случае не становитесь под этот разряд, хоть это и безболезненно. Токи высоких энергий не вызывают сенсорной реакции , но могут сильно разогревать ткани. Последствия от подобных экспериментов скажутся с годами.

Видео по теме

Источники:

  • как собрать катушку тесла в 2019

В радиолюбительской практике нередко возникает необходимость изготовить трансформатор с нестандартными значениями тока и напряжения. Хорошо, когда удается найти готовое устройство с требуемыми обмотками, в другом случае изготовить его придется самостоятельно.

Повышающие трансформаторные преобразователи напря­жения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сете­вой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повы­шенного напряжения используют автогенераторные преобразо­ватели или трансформаторнью преобразователи с внешним возбуждением.

Пример двухтактного трансформаторного автогенератора , преобразующего постоянное напряжение 12 Б в перемен­ное 220 В, показан на рис. 10.1. Преобразователь работает на по­вышенной частоте преобразования - 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для пи­тания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность - до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (бо­лее 10 кГц).

Для трансформатора Т1 использован магнитопровод транс­форматора кадровой развертки (ТВК). Все его обмотки перемо­таны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6…0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16…0,2; обмотка IV - 1000 витков такого же провода. Намотка обмоток I и II ве­дется одновременно в два провода виток к витку. Обмотка III

Рис. 10.1. Схема преобразователя напряжения средней мощности

Рис. 10.2. Схема мощного преобразователя напряжения

наматывается также виток к витку. Обмотка IV - внавал равно­мерно по каркасу.

Повышающий трансформаторный преобразователь напря­жения аккумулятора (рис. 10.2) позволяет получить на выходе на­пряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5A[^ 0.2].

В основе устройства - задающий генератор прямоуголь­ных импульсов, выполненный по схеме мультивибратора, типовая схема которого была приведена ранее на рис. 1.1. Рабочая часто­та этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мульти­вибратора подключены двухкаскаднью усилители мощности, по­зволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходнью транзи­сторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифи-цированнью трансформаторы типа ТАН или Г/7/7. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и VT3 - КТ814, КТ816, КТ837; диоды VD1 и VD2 - Д226.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Бт . Максимальная выходная мощность преобразователя - 100 Вт, КПД -до 50%.

Рис. 10.4. Схема простого преобразователя напряжения

Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах VT2 и VT3 {КТ815). Выходные каскады преобразователя собраны на составных транзисторах VT1 и VT4 {КТ825). Эти транзисторы установлены без изолирующих прокладок на общий радиатор.

Устройство потребляет от аккумулятора ток до 20 Л.

В качестве силового использован готовый сетевой транс­форматор на 100 Вт (сечение центральной части железного сер­дечника - около 10 cм^). У него должны быть две вторичные обмотки, рассчитанные на 8 Б/10 Л каждая.

Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Преобразователь напряжения повышенной мощности рабо­тает от аккумуляторной батареи (рис. 10.5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц . Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Трансформатор Т2 - также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков про­вода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 cм^. Сильноточные токовводы должны иметь сечение не менее 4 мм^.

Работа преобразователя проверялась от аккумулятора 6СТ60.

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 10.6) . Оно потребляет под нагрузкой ток около 2,5 у4.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триг­гере DDI.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах VT3, VT4, нагруженный на трансформатор Т1. За­дающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 S. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразова­теля. Микросхема DDI К561ТМ2 {564ТМ2) и транзисторы предва­рительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной часто­той около 50 Гц.

Рис. 10.5. Схема преобразователя напряжения повышенной мощности

Рис. 10.6. Схема преобразователя напряжения для питания электробритвы

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30…50 Вт. Все ранее су­ществовавшие вторичнью обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим ко­эффициенту трансформации около 20 по отношению к остав­ленной обмотке на 220 В. Если число витков вьюоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до полу­чения на выходе преобразователя напряжения 220 В.

Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 10.6) была упрощена В. Ка-равкиным . Усовершенствования коснулись только задаю­щего генератора, схема которого показана на рис. 10.7. Этот генератор работает на частоте 50 Гц.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.8) при подключении к автомобильному аккуму­лятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2…3 часов . Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (VT3 - VT8), коммутирующие ток в первичной обмотке

Рис. 10.7. Вариант схемы задающего генератора для преобразо­вателя напряжения

Рис. 10.8. Схема преобразователя напряжения на 100 Вт

повышающего трансформатора Т1. Мощные транзисторы VT5 и VT8 защищены от перенапряжений при работе без нагрузки дио­дами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низ­ковольтные обмотки Г и I" имеют по 28 витков провода ПЭЛ диа­метром 2,1 мм, а повышающая обмотка II - 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются ми­нимальных искажений формы выходного напряжения.

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9 . Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 - R3 и кон­денсаторе С2. Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DDI К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц. Они через буферные элементы - инверторы /СМО/7-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансфор­матор Т1, повышающий импульсное напряжение до 220 В.

Рис. 10.9. Схема преобразователя напряжения на 300 Вт

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюми­ниевой шины сечением 3×2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют час­тоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 S, а их частоту следования, рав­ную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоот­воде с площадью около 200 см^. Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить в эмиттерные цепи транзисторов, то транзисторы каждого плеча можно будет установить на общий теплоотвод.

Нагрузку к преобразователю допускается подключать толь­ко после того, как на схему будет подано питание.

Все рассмотренные ранее повышающие преобразовате­ли имели нерегулируемое и нестабилизированное выходное напряжение.

На рис. 10.10 показан простой повышающий преобразова­тель , к достоинствам которого можно отнести:

Стабилизированное выходное напряжение;

Возможность регулировки величины выходного напряжения в значительных пределах;

Применение широко распространенных элементов;

Использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

Рис. 10.10. Схема повышающего преобразователя 9…12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока

Преобразователь выполнен на транзисторах VT4 и VT5 по классической схеме Ройера. Его питание осуществляется от регу­лируемого стабилизатора напряжения на транзисторах VT1 - VT3. Следует иметь в виду, что транзисторы VT3 - VT5 обяз^-тельнб должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 - VD2 {КС147А и КС133А) можно за­менить на КС182. Максимальный ток нагрузки - до 100 мА.



Понравилась статья? Поделиться с друзьями: