Есть ли сотовая. Чем отличается сотовый телефон от мобильного: Сравнение

СОТОВАЯ СВЯЗЬ СОТОВАЯ СВЯЗЬ

СО́ТОВАЯ СВЯЗЬ (англ. cellular phone, подвижная радиорелейная связь), вид радиотелефонной связи, в которой конечные устройства - мобильные телефоны (см. МОБИЛЬНЫЙ ТЕЛЕФОН) - соединены друг с другом с помощью сотовой сети - совокупности специальных приемопередатчиков (базовых станций). Базовые станции связываются друг с другом с помощью каналов фиксированной связи, а с обслуживаемыми мобильными телефонами - с помощью радиоволн. Область, где могут находится обслуживаемые отдельной базовой станцией мобильные телефоны, называется сотой (ячейкой, англ. cell). Один сотовый телефон обычно в каждый момент времени виден несколькими базовыми станциями, и, согласно используемым в сотовой сети стандартам и протоколам, связывается с той базовой станцией, которая имеет наименьшее ослабление сигнала (и при этом у этой станции не исчерпан лимит на число обслуживаемых телефонов). Таким образом, когда мобильный телефон перемещается вместе с использующим его человеком, и попадает в области видимости разных базовых станций, то его соединение с сотовой сетью не разрывается, и он может совершать и принимать звонки, а также пользоваться всеми услугами сотовой сети.
Компании, которые предоставляют доступ к сотовым сетям, называются операторами сотовой связи.
Мощность радиопередатчика мобильного телефона в сотовой сети гораздо меньше (в сотни раз) мощности передатчика базовой станции, поэтому мобильные телефоны имеют сравнительно небольшие размеры и безопасны в использовании. Уровень излучения мобильных телефонов регламентируются специальными международными стандартами безопасности. Существует множество стандартов и технологий мобильной связи.
Сети мобильной связи первого поколения
Первые сотовые сети были построены с использованием аналоговых стандартов - стандартов первого поколения (1G, first generation). Самые распространенные из них - NMT и AMPS. Обычно рядом с названием стандарта записывают частоту в мегагерцах, рядом с которой выделен частотный диапазон для взаимодействия базовой станции с мобильными телефонами, например базовые станции сетей NMT-450 общаются с сотовыми телефонами на частоте 450 МГц.
Сеть на основе стандарта NMT (Nordic Mobile Telephone) - первого стандарта сотовой связи - начала работать в странах Северной Европы в 1981. Также NMT был первым стандартом мобильной связи, используемым в России (1991) и в США.
В аналоговых стандартах для обеспечения одновременной работы нескольких мобильных телефонов в одной соте, а также базовых станций различных сот, использовалось только разделение каналов по частоте (FDMA, Frequency Division Multiple Access, одновременный доступ с разделением по частоте), что в условиях дефицита свободных частот означает работу в одной соте максимум только 10-20 телефонов и большие размеры сот. Это было приемлемо только при относительно низкой распространенности мобильной связи. Также аналоговые стандарты не давали никакой защиты от помех, а подслушать разговор иногда можно было с помощью простого радиоприемника.
В 2000-е гг. везде в мире сети первого поколения вытесняются сетями второго и третьего поколений.
Сети мобильной связи второго поколения
В сетях второго поколения (2G, second generation) данные между базовыми станциями и мобильными телефонами передаются в цифровом виде. Это позволило использовать в стандартах DAMPS и пришедшему ему на смену GSM для одновременной работы с одной базовой станции нескольких телефонов временное разделение (TDMA, Time Division Multiple Access, одновременный доступ с разделением по времени) - каждый частотный канал разделен на несколько так называемых «таймслотов», т. е. интервалов времени, в течение которых канал занимает один телефон. Таким образом, одна базовая станция может обслуживать до нескольких сотен телефонов одновременно. А мощности передатчиков в мобильных телефонах второго поколения были снижены, так как потери при передаче оцифрованного звука гораздо ниже.
В стандарте CDMA (Code Division Multiple Access, одновременный доступ с разделением по коду) используются более сложные методы разделения радиоэфира между различными мобильными телефонами. Причем, как много ни было бы разных телефонов в соте, и сколько бы базовых станций ни было бы соседями, каждый мобильный телефон использует для приема и передачи целую частотную полосу (канал) сравнительно большой ширины - 1,25 МГц в стандарте CDMA2000 1x. Чтобы различать сигналы разных телефонов и базовых станций, каждый передатчик имеет собственный код, который распространяется по всей ширине канала.
Самым популярным стандартом сотовой связи является именно стандарт второго поколения GSM - Global System for Mobile Communications (Глобальная система мобильной связи). Мобильными телефонами этого стандарта сейчас пользуются более миллиарда человек во всем мире.
Технологии передачи данных в сетях второго поколения
Но главным следствием перехода к цифровой форме сигнала стала возможность использовать мобильные телефоны для передачи не только голоса (звука), но и других видов информации. Первой подобной услугой, сделавшей возможным передачу текста между мобильными телефонами, был так называемый «сервис коротких сообщений» - Short Message Service (сокращенно SMS). SMS впервые появился в стандарте GSM (в декабре 1992 в сети британского оператора Vodaphone был произведен эксперимент по рассылке SMS), но позднее был реализован и в сетях на основе других стандартов. С помощью технологии SMS можно передавать не только короткие текстовые сообщения, но и простые картинки и звуки, а также выражать свои эмоции с помощью специальных изображений - смайликов (от smile - улыбка). Для этого используются технологии EMS и Nokia Smart Messaging.
Позднее, с совершенствованием мобильных телефонов и развитием компьютеризации, в сетях GSM были введены технологии для передачи компьютерных данных, доступа к сети Интернет (см. ИНТЕРНЕТ) . Первой такой технологией была CSD (Circuit Switched Data, передача данных через прямое подключение), в которой выделенный телефону таймслот используется для передачи данных со скоростью 9.6 килобит в секунду - таймслот выделяется точно так же, как и при совершении телефонных звонков. При этом телефон нельзя использовать по своему прямому назначению. Для увеличения скорости передачи была создана технология HSCSD (High Speed CSD, высокоскоростная CSD) - телефон получает несколько таймслотов сразу, также применяется специальный алгоритм для коррекции ошибок в зависимости от качества соединения. При использовании этой технологии в соте может не хватить таймслотов для всех мобильных телефонов, поэтому она не стала распространенной.
Самой распространенной технологией передачи данных является GPRS (General Packet Radio Service, служба пакетной радиопередачи данных общего пользования), которая позволяет использовать выделенные таймслоты сразу нескольким мобильным телефонам, использует различные алгоритмы при разном качестве связи с БС, различной загруженности БС. Каждый телефон использует различное количество таймслотов, освобождая их при отсутствии необходимости или запрашивая новые. Таймслоты делятся между телефонами с помощью пакетного разделения, как в компьютерных сетях. Количество таймслотов, которое может использовать телефон, ограничено аппаратно, и зависит от класса GPRS мобильного телефона. Скорость передачи асимметрична - если для получения информации телефон класса может использовать до 4-х таймслотов при 8-м и 10-м классах GPRS, то для передачи всего 1-2. Теоретический предел скорости для GPRS при идеальном соединении (21,4 килобит в секунду) и 5-и выделенных таймслотах составляет 107 килобит в секунду. Но реально средняя скорость работы GPRS находится на уровне 56 килобит в секунду. Мобильным телефонам при использовании технологии GPRS выделяются IP-адреса в Интернете, в большинстве случаев не уникальные.
Дальнейшим развитием технологии GPRS стала технология EDGE (Enhanced Data Rates for GSM Evolution, повышенная скорость передачи данных для развития GSM). В этой технологии, по сравнению с GPRS, применены новые схемы кодирования информации, а также изменен алгоритм обработки ошибок (ошибочно переданные пакеты не передаются заново, передается только информация для их восстановления). В результате, максимальная скорость передачи достигает 384 килобит в секунду.
Иногда технологию GPRS называют технологией мобильной связи «поколения 2,5» - 2.5G, а технологию EDGE - технологией 2.75G.
Для сетей CDMA2000 создана технология 1xRTT, позволяющая достигать скорости 144 килобит в секунду.
Назначение технологий передачи данных в сетях мобильной связи
Первоначально эти технологии использовались в мобильных телефонах для доступа в Интернет с помощью персональных компьютеров, и лишь затем, с дальнейшим развитием мобильных телефонов, предоставили доступ в Интернет непосредственно с мобильного телефона. Для получения информации на мобильный телефон использовалась технология WAP (Wireless Application Protocol, протокол для беспроводных приложений), которая предъявляла сравнительно небольшие требования к техническим характеристикам мобильного телефона. Странички создавались на специальном языке WML (Wireless Markup Language), приспособленном к особенностям мобильных телефонов - небольшому размеру экрана, только клавишному управлению, небольшим скоростям передачи данных, задержкам при загрузке страниц, и так далее. Более того, ввиду низкой производительности процессора и малого объема памяти мобильного телефона, для максимального облегчения работы мобильного браузера странички на этом языке обрабатывались не непосредственно, а с помощью промежуточного сервера (так называемого WAP-шлюза), который компилировал их в специальный байт-код, выполняемый мобильным телефоном. Именно за это - работу промежуточного сервера - операторы сотовой связи так высоко оценивают эту услугу.
Однако с совершенствованием мобильных телефонов вскоре произошли изменения. Во-первых, отпала необходимость в промежуточном сервере - теперь браузеры современных мобильных телефонов выполняют его работу самостоятельно. Во-вторых, на смену специализированному языку WML приходит стандарт xHTML - он отличается от повсеместно используемого в Интернете языка HTML только соблюдением некоторых специальных правил, а именно, спецификации XML. В-третьих, современные мобильные телефоны обладают вполне достаточным размером экрана для отображения обычных, предназначенных для компьютеров, страниц Интернета. В-четвертых, с развитием современного Интернета оказалось, что код HTML-страниц стал упрощаться и структурироваться, в связи с тем, что теперь он пишется преимущественно машинно. В связи с этими изменениями, многие современные телефоны вполне могут самостоятельно обрабатывать HTML.
На базе этих технологий передачи данных также были созданы дополнительные сервисы для мобильных телефонов - например, MMS(Multimedia Messaging System, система fпередачи мультимедийных сообщений). С помощью мобильного телефона теперь легко можно составить сообщение, содержащее текст, изображение, звук, видео или другие компьютерные файлы. Многие элементы MMS могут быть объединены в слайды, и принявший MMS телефон может показать презентацию, состоящую из них. Технически, когда отправляется MMS-сообщение, используется специализированный протокол передачи данных через обычное Интернет-соединение, например, через GPRS.
MMS-сообщения с мобильного телефона можно отправлять не только на другие мобильные телефоны, но и на адреса электронной почты - на электронный ящик придут все файлы, из которых состоит MMS. Каждое сообщение может быть отправлено сразу по нескольким адресам.
Если адресатом является номер другого мобильного телефона, поддерживающего MMS, то он напрямую закачивает содержимое сообщения по специальному протоколу, либо автоматически, либо по специальному запросу. А если принимающий сообщение мобильный телефон не поддерживает MMS, то он получает SMS-сообщение, содержащее ссылку в Интернете, перейдя по которой можно через Web посмотреть содержимое MMS либо с самого мобильного телефона, либо с персонального компьютера.
Однако большинство современных мобильных телефонов оснащено программами - клиентами электронной почты, и, по мере их совершенствования, MMS становится ненужным, вытесняется другими сервисами, например, BlackBerry.
Доступ в Интернет с мобильных телефонов может использоваться для тех же целей, что и в персональных компьютерах, например, для использования различных служб обмена сообщениями, вроде ICQ.
Мобильная связь третьего поколения
Скорости передачи данных в сетях второго поколения недостаточны для реализации многих новых задач мобильной связи, в частности, передачи высококачественного видео в реальном времени (видеофонии), современных фотореалистичных компьютерных игр через Интернет и других. Для обеспечения необходимых скоростей созданы новые стандарты и протоколы:
1. Стандарт UMTS (Universal Mobile Telecommunications System, универсальная система мобильной связи) на базе технологии W-CDMA (Wideband Code Division Multiple Access, широкополосный CDMA), частично совместимой с GSM. Скорость приема и передачи данных достигает 1920 килобит в секунду.
2. Технология 1xEV (evolution, развитие) для сетей CDMA2000. Скорость приема данных достигает 3,1 мегабит в секунду, а передачи - 1,8 мегабит в секунду.
3. Технологии TD-SCMA, HSDPA и HSUPA. Позволяют достичь еще более высоких скоростей. По состоянию на 2006 технологии W-CDMA предоставляют часто поддержку HSDPA. TD-SCMA разрабатываются.
Таким образом, современные технологии мобильной связи - это не столько технологии мобильной телефонии, сколько универсальные технологии передачи информации.


Энциклопедический словарь . 2009 .

Смотреть что такое "СОТОВАЯ СВЯЗЬ" в других словарях:

    Сотовая связь, сеть подвижной связи один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных … Википедия

    Один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично… … Словарь бизнес-терминов

    Сотовая связь третьего поколения - Сети сотовой связи третьего поколения (3rd Generation, или 3G) работают на частотах диапазона около 2 гигагерц и обеспечивают передачу данных на скорости до 2 мегабит в секунду. Такие характеристики позволяют использовать мобильный телефон, в… … Энциклопедия ньюсмейкеров

    ООО «Екатеринбург 2000» Тип Оператор сотовой связи Расположение … Википедия

    Статья содержит ошибки и/или опечатки. Необходимо проверить содержание статьи на соответствие грамматическим нормам русского языка … Википедия

    В Московском метрополитене работают сотовые телефоны стандарта GSM следующих сотовых операторов на следующих станциях. Содержание 1 «МТС» 2 «Билайн» 3 «МегаФон» … Википедия

    - … Википедия

    Сотовая связь один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты … Википедия

    Координаты: 56°49′53.36″ с. ш. 60°35′14.81″ в. д. / 56.831489° с. ш. 60.587447° в. д. … Википедия

aslan wrote in February 2nd, 2016

Сотовая связь с недавних пор так прочно вошла в нашу повседневную жизнь, что трудно представить современное общество без нее. Как и многие другие великие изобретения мобильный телефон сильно повлиял на нашу жизнь, и на многие ее сферы. Трудно сказать каким было бы будущее, если бы не этот удобный вид связи. Наверняка таким же, как и в фильме "Назад в Будущее-2", где есть летающие авто, ховерборды, и многое другое, но нет сотовой связи!

Но сегодня в специальном репортаже для будет рассказ не о будущем, а о том, как устроена и работает современная сотовая связь.


Для того, чтобы узнать о работе современной сотовой связи в формате 3G/4G, я напросился в гости к новому федеральному оператору Tele2 и провел целый день с их инженерами, которые объяснили мне все тонкости передач данных через наши мобильные телефоны.

Но расскажу вначале немного об истории возникновения сотовой связи.

Принципы работы беспрводной связи были опробованы почти 70 лет назад - первый общественный подвижный радиотелефон появился в 1946 г. в Сент-Луисе, США. В Советском союзе опытный образец мобильного радиотелефона был создан в 1957 году, потом ученые других стран создавали подобные устройства с различными характеристиками, и только в 70-х годах прошлого века в Америке были определены современные принципы работы сотовой связи, после чего и началось ее развитие.

Мартин Купер - изобретатель прототипа портативного сотового телефона Motorola DynaTAC весом в 1,15 кг и размерами 22,5х12,5х3,75 см

Если в западных странах к середине 90-х годов прошлого века сотовая связь была распространена повсеместно и ей пользовалась большая часть населения, то в России она только начала появляться, и стала доступной для всех чуть более 10 лет назад.


Громоздкие кирпичеобразные мобильники работавшие в форматах первого и второго поколений ушли в историю, уступив место смартфонам с 3G и 4G, лучшей голосовой связью и высокой скоростью интернета.

Почему связь называется сотовой? Потому что территория, на которой обеспечивается связь, разбивается на отдельные ячейки или соты, в центре которых располагаются базовые станции (БС). В каждой "соте" абонент получает одинаковый набор услуг в определенных территориальных границах. Это означает, что перемещаясь от одной "соты" к другой, абонент не чувствует территориальной привязанности и может свободно пользоваться услугами связи.

Очень важно, чтобы была непрерывность соединения при перемещении. Это обеспечивается благодаря так называемому хэндовер (Handover), при котором соединение установленное абонентом как бы подхватывается соседними сотами по эстафете, а абонент продолжает разговаривать или копаться в соцсетях.

Вся сеть делится на две подсистемы: подсистема базовых станций и подсистема коммутации. Схематически это выглядит так:

В середине "соты", как было сказано выше находится базовая станция, которая обычно обслуживает три "соты". Радиосигнал от базовой станции излучается через 3 секторные антенны, каждая из которых направлена на свою "соту". Бывает так, что на одну "соту" направлены сразу несколько антенн одной базовой станции. Это связано с тем, что сеть сотовой связи работает в нескольких диапазонах (900 и 1800 МГц). Кроме того, на данной базовой станции может присутствовать оборудование сразу нескольких поколений связи (2G и 3G).

Но на вышках БС Tele2 стоит оборудование только третьего и четвертого поколения - 3G/4G, так как компания решила отказаться от старых форматов в пользу новых, которые помогают избегать обрывов голосовой связи и обеспечивают более стабильный интернет. Завсегдатаи соцсетей поддержат меня в том, что в наше время скорость интернета очень важна, 100-200 кб/с уже не достаточно, как это было пару-тройку лет назад.

Наболее привычным местом размещения БС является башня или мачта, построенная специально для нее. Наверняка вы могли видеть красно-белые вышки БС где-то в отдаленности от жилых домов (в поле, на холме), или там, где поблизости нет высоких зданий. Как вот эта, которая видна из моего окна.

Однако, в условиях городской местности трудно найти место под размещение массивного сооружения. Поэтому в крупных городах базовые станции размещаются на зданиях. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 км.

Это антенны, само оборудование БС находится на чердаке, или в контейнере на крыше, которое представляет из себя пару железных шкафов.

Некоторые базовые станции расположены там, где вы даже не догадаетесь. Как например на крыше этой парковки.

Антенна БС состоит из нескольких секторов, каждый из которых принимает/отправляет сигнал в свою сторону. Если вертикальная антенна осуществляет связь с телефонами, то круглая соединяет БС с контроллером.

В зависимости от характеристик, каждый сектор может обслуживать до 72 звонков одновременно. БС может состоять из 6 секторов, и обслуживать до 432 звонков, однако обычно на станциях устанавливают меньше передатчиков и секторов. Сотовые операторы, такие как Tele2, предпочитают ставить больше БС для улучшения качества связи. Как мне сказали, здесь используется самое современное оборудование: базовые станции Ericsson, транспортная сеть - Alcatel Lucent.

От подсистемы базовых станций сигнал передается в сторону подсистемы коммутации, где и происходит установление соединения с нужным абоненту направлением. В подсистеме коммутации есть ряд баз данных, в которых хранятся сведения об абонентах. Кроме того эта подсистема отвечает за безопасность. Если сказать проще, то коммутатор выполняет те же функции, что и девушки операторы, которые раньше руками соединяли вас с абонентом, только сейчас все это происходит автоматически.

Оборудование для этой базовой станции спрятано в этом железном шкафу.

Кроме обычных вышек есть также и мобильные варианты базовых станций, размещенные на грузовиках. Их очень удобно использовать во время стихийных бедствий или в местах массового скопления людей (футбольные стадионы, центральные площади) на время праздников, концертов и различных мероприятий. Но, к сожалению, из-за проблем в законодательстве широкого применения они пока не нашли.

Для обеспечения оптимального покрытия радиосигналом на уровне земли, базовые станции проектируются специальным образом, потому несмотря на дальность в 35 км. сигнал не распространяется на высоту полета самолетов. Однако некоторые авиакомпании уже начали устанавливать на своих бортах небольшие базовые станции, обеспечивающие сотовую связь внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах.

Также я заглянул в офис Tele2, чтобы увидеть как специалисты контролируют качество сотовой связи. Если несколько лет назад такая комната была бы увешана до потолка мониторами показывающими данные сети (загруженность, аварии сети, и т.п.) то со временем надобность в таком количестве мониторов отпала.

Технологии со временем сильно развились и достаточно вот такой небольшой комнаты с несколькими специалистами, чтобы наблюдать за работой всей сети в Москве.

Немного видов из офиса Tele2.

На совещании сотрудников компании обсуждаются планы по захвату столицы) С начала стройки до сегодняшнего дня Tele2 успел покрыть своей сетью всю Москву, и постепенно завоевывает Подмосковье, запуская более 100 базовых станций еженедельно. Так как я живу теперь в области, мне очень важно. чтобы эта сеть как можно быстрее пришла в мой городок.

В планах компании на 2016 г. обеспечение высокоскоростной связи в метро на всех станциях, на начало 2016 связь Tele2 присутствует на 11 станциях: связь стандарта 3G/4G на метро «Борисово», «Деловой центр», «Котельники», «Лермонтовский проспект», «Тропарево», «Шипиловская», «Зябликово», 3G: «Белорусская» (Кольцевая), «Спартак», «Пятницкое шоссе», «Жулебино».

Как я говорил выше, Tele2 отказалась от формата GSM в пользу стандартов третьего и четвертого поколения - 3G/4G. Это позволяет устанавливать базовые станции 3G/4G с большей частотой (например, внутри МКАД БС стоят на расстоянии около 500 метров друг от друга), чтобы обеспечивать более стабильную связь и высокую скорость мобильного интернета, чего не было в сетях предыдущих форматов.

Из офиса компании я в компании инженеров Никифора и Владимира отправляюсь на одну из точек, где им нужно замерить скорость связи. Никифор стоит напротив одной из мачт, на которой установлено оборудование для обеспечения связи. Если приглядитесь, то заметите чуть далее слева еще одну такую мачту, с оборудованием других сотовых операторов.

Как это ни странно, но сотовые операторы часто разрешают своим конкурентам использовать свои башенные сооружения для размещения антенн (естественно на взаимовыгодных условиях). Это вызвано тем, что строительство башни или мачты - дорогое удовольствие, и такой обмен позволяет сэкономить немало средств!

Пока мы замеряли скорость связи, Никифора несколько раз прохожие бабушки и дядьки спросили не шпион ли он)) "Да, глушим радио "Свобода"!).

Оборудование на самом деле выглядит необычно, по его виду можно предположить все что угодно.

У специалистов компании немало работы, если учесть, что в Москве и области у компании более 7тыс. базовых станций: из них порядка 5тыс. 3G и около 2тыс. базовых станций LTE, а за последнее время количество БС увеличилось еще примерно на тысячу.
Всего за три месяца в Подмосковье было выведено в эфир 55% от общего количества новых базовых станций оператора в регионе. В настоящий момент компания обеспечивает качественное покрытие территории, на которой проживает более 90% населения Москвы и Московской области.
Кстати, в декабре сеть 3G Tele2 была признана лучшей по качеству среди всех столичных операторов.

Но я решил лично проверить насколько хороша связь у Tele2, потому приобрел симку в ближайшем ко мне торговом центре на м.Войковская, с самым простым тарифом "Очень черный" за 299 р (400 смс/минут и 4 ГБ). Кстати, у меня был подобный билайновский тариф, который на 100 рублей дороже.

Проверил скорость не отходя далеко от кассы. Прием - 6.13 Mbps, передача - 2.57 Mbps. Учитывая, что я стою в центре торгового центра это неплохой результат, связь Tele2 хорошо проникает сквозь стены большого ТЦ.

На м.Третьяковская. Прием сигнала - 5.82 Mbps, передача - 3.22 Mbps.

И на м.Красногвардейская. Прием - 6.22 Mbps, передача - 3.77 Mbps. Замерил у выхода из метро. Если принять во внимание, что это окраина Москвы, очень даже прилично. Считаю, что вполне приемлемая связь, уверенно можно сказать, что стабильная, если учитывать, что Tele2 появилась в Москве всего пару месяцев назад.

В столице стабильная связь Tele2 есть, это хорошо. Очень надеюсь, что они побыстрее придут в область и я смогу в полной мере пользоваться их связью.

Теперь и вы знаете как работает сотовая связь!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите пишите мне - Аслан ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта http://ikaketosdelano.ru

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

Принцип работы сотовой связи

Основные принципы сотовой телефонии довольно просты. Первоначально Федеральная комиссия по связи установила географические зоны покрытия сотовых радиосистем на основе измененных данных переписи 1980 г. Идея сотовой связи состоит в том, что каждая зона подразделяется на ячейки шестиугольной формы, которые, совмещаясь, образуют структуру, напоминающую пчелиные соты, как показано на рисунке 6.1, а. Шестиугольная форма была выбрана потому, что она обеспечивает наиболее эффективную передачу, приблизительно соответствуя круговой диаграмме направленности и при этом устраняя щели, которые всегда возникают между соседними окружностями.

Сота определяется своими физическими размерами, численностью населения и структурой трафика. Федеральная комиссия по связи не регламентирует количеств сот в системе и их размер, предоставляя операторам возможность установить эти параметры в соответствии с ожидаемой структурой трафика. Каждой географической области выделяется фиксированное количество сотовых речевых каналов. Физические размеры соты зависят от абонентской плотности и структуры вызовов. Например, крупные соты (макросоты) обычно имеют радиус от 1,6 до 24 км при мощности передатчика базовой станции от 1 Вт до 6 Вт. Самые маленькие соты (микросоты) обычно имеют радиус 460 м или меньше при мощности передатчика базовой станции от 0,1 Вт до 1 Вт. На рисунке 6.1, б показана сотовая конфигурация с сотами двух размеров.

Рисунок 6.1. – Сотовая структура ячеек а);сотовая структура с сотами двух размеров б) классификация сот в)

Микросоты чаще всего используются в регионах с высокой плотностью населения. В силу своего небольшого радиуса действия микросоты менее подвержены воздействиям, ухудшающим качество передачи, например, отражениям и задержкам сигнала.

Макросота может накладываться на группу микросот, при этом микросоты обслуживают медленно перемещающиеся мобильные аппараты, а макросота – быстро перемещающиеся аппараты. Мобильный аппарат способен определять скорость своего перемещения как быструю или медленную. Это позволяет уменьшить число переходов из одной соты в другую и коррекции данных о месте нахождения.

Алгоритм перехода из одной соты в другую может быть изменен при малых расстояниях между мобильным аппаратом и базовой станцией микросоты.

Иногда радиосигналы в соте слиш­ком слабы, чтобы обеспечить надеж­ную связь внутри помещений. Осо­бенно это касается хорошо экрани­рованных участков и зон с высоким уровнем помех. В таких случаях ис­пользуются очень маленькие соты – пикосоты. Пикосоты внутри помеще­ний могут использовать те же час­тоты, что и обычные соты данного региона, особенно при благоприятной окружающей среде, как, например, в подземных тоннелях.

При планировании систем, использующих соты шестиугольной формы, передатчики базовой станции могут раз­мещаться в центре соты, на ребре соты или в вер­шине соты (рисунок 6.2 а, б, в соответственно). В сотах с передатчиком в центре используются обычно всенаправленные антенны, а в сотах с передатчиками на ребре или в вершине – секторные направленные антенны.

Всенаправленные антенны излучают и принимают сигналы одинаково во всех направлениях.

Рисунок 6.2 – Размещение передатчиков в сотах: в центре а); на ребре б); в вершине в)

В системе сотовой связи одна мощная стационарная базовая станция, расположенная высоко над центром города, может заменяться многочисленными одинаковыми маломощными станциями, которые устанавливаются в зоне покрытия на площадках, расположенных ближе к земле..

Соты, использующие одну и ту же группу радиоканалов, могут избежать взаимных влияний, если они правильно разнесены. При этом наблюдается повторное использование частот. Повторное использование частот – это выделение одной и той же группы частот (каналов) нескольким сотам при условии, что эти соты разделены значительны­ми расстояниями. Повторному использованию частот способствует уменьшение зоны обслуживания каждой соты. Базовой станции каждой соты выделяется группа рабочих частот, отличающихся от частот соседних сот, а антенны базовой станции выбираются таким образом, чтобы охватить желаемую зону обслуживания в пределах своей соты. Поскольку зона обслуживания ограничена границами одной соты, различные соты могут использовать одну и ту же группу рабочих частот без взаимных влияний при условии, что две таких соты находятся на достаточном расстоянии друг от друга.

Географическая зона обслуживания сотовой системы, содержащая несколько групп сот делится на кластеры (рисунок 6.3). Каждый кластер состоит из семи сот, которым выделяется одинаковое количество полнодуплексных каналов связи. Соты с одинаковыми буквенными обозначениями используют одну и ту же группу рабочих частот. Как видно из рисунка, одинаковые группы частот используются во всех трех кластерах, что позволяет в три раза увеличить количество доступных каналов мобильной связи. Буквы A , B , C , D , E , F и G обозначают семь групп частот.


Рисунок 6.3 – Принцип повторного использования частот в сотовой связи

Рассмотрим систему с фиксированным количеством полнодуплексных каналов, доступных в некоторой области. Каждая зона обслуживания разделя­ется на кластеры и получает группу каналов, которые распределяются между N сотами кластера, группируясь в неповторяющиеся комбинации. Все соты имеют одинаковое количество каналов, но при этом они могут обслуживать зоны раз­ового размера.

Таким образом, общее число каналов сотовой связи, доступных в кластере, можно представить выражением:

F = GN (6.1)

где F – число полнодуплексных каналов сотовой связи, доступных в кластере;

G – число каналов в соте;

N – число сот в кластере.

Если кластер «копируется» в пределах заданной зоны об­служивания m раз, то суммарное число полно дуплексных каналов составит:

C = mGN = mF (6.2)

где С – суммарное число каналов в заданной зоне;

m – число кластеров в заданной зоне.

Из выражений (6.1) и (6.2) видно, что суммарное число каналов в сотовой телефонной системе прямо пропорционально количеству «повторений» кластера в заданной зоне обслуживания. Если размер кластера уменьшается, а размер соты остается неизменным, то для покрытия заданной зоны обслуживания потребуется больше кластеров, и суммарное число каналов в системе возрастет.

Число абонентов, которые могут одновременно использовать одну и ту же группу частот (каналов), находясь не в соседних ячейках небольшой зоны об­служивания (например, в пределах города), зависит от общего числа ячеек в данной зоне. Обычно число таких абонентов равно четырем, однако в густона­селенных регионах оно может быть значительно больше. Это число называют коэффициентом повторного использования частот или FRF Frequency reuse factor . Математически его можно выразить отношением:

(6.3)

где N – общее число полно дуплексных каналов в зоне обслуживания;

С – общее число полнодуплексных каналов в соте.

В условиях прогнозируемого увеличения трафика сотовой связи возросший спрос на обслуживание удовлетворяют путем уменьшения размера соты, раз­деляя ее на несколько сот, каждая из которых имеет свою базовую станцию. Эффективное разделение сот позволяет системе обрабатывать больше вызовов при условии, что соты не будут слишком маленькими. Если диаметр соты стано­вится меньше 460 м, то базовые станции соседних ячеек будут влиять друг на друга. Соотношение между повторным использованием частот и размером кластера определяет, как можно изменить масштаб сотовой системы в случае увеличения абонентской плотности. Чем меньше сот в кластере, тем больше вероятность взаимных влияний между каналами.

Поскольку соты имеют шестиугольную форму, каждая из них всегда имеет шесть равноудаленных соседних сот, и углы между линиями, соединяющими центр любой соты с центрами соседних сот, кратны 60°. Поэтому число возмож­ных размеров кластера и схем размещения сот ограничено. Для соединения сот между собой без пробелов (мозаичным способом) геометрические размеры ше­стиугольника должны быть такими, чтобы число сот в кластере удовлетворяло условию:

(6.4)

где N – число сот в кластере; i и j – неотрицательные целые числа.

Отыскание маршрута к ближайшим сотам с совмещенным каналом (так называемым сотам первого яруса) происходит следующим образом:

Перемещение на i сот (через центры соседних сот):

Перемещение на j сот вперед (через центры соседних сот).

Например, число сот в кластере и место­положение сот первого яруса для следующих значений: j = 2. i = 3 будет определяться из выражения 6.4 (рисунок 6.4) N = 3 2 + 3 2 + 2 2 = 19.

На рисунке 6.5 показаны шесть ближайших сот, использующих те же каналы, что и сота А .


Процесс передачи обслуживания из одной соты в другую, т.е. когда мобильный аппарат удаляется от базовой станции 1 к базовой станции 2 (рисунок 6.6) включает четыре основных этапа:

1) инициирование – мобильный аппарат или сеть выявляет необходимость в передаче обслуживания и инициирует необходимые сетевые процедуры;

2) резервирование ресурсов – с помощью соответствующих сетевых проце­урр резервируются ресурсы сети, необходимые дляпередачи обслуживания (речевой канал и канал управления);

3) исполнение – непосредственная передача управления от одной базовой станции к другой;

4) окончание – излишние сетевые ресурсы освобождаются, становясь доступ­ными другим мобильным аппаратам.

Рисунок 6.6 – Передача обслуживания

Многие ли из нас задумываются, что происходит после того, как мы нажимаем кнопку вызова на мобильном телефоне? Как работают сотовые сети ?

Скорее всего, нет. Чаще всего мы набираем федеральный номер собеседника на автомате, как правило, по делу, поэтому что там и как устроено нас не интересует в конкретный момент времени. А ведь это удивительные вещи. Как можно позвонить человеку, находящемуся в горах или посреди океана? Почему во время разговора мы можем плохо слышать друг друга, а то и вовсе прерваться. Наша статья попробует пролить свет на принцип работы сотовой связи.

Итак, большая часть плотно заселенной территории России, покрыта так называемыми БС, что без сокращения именуются Базовыми Станциями. Многие могли обращать на них свое внимание, путешествуя между городами. В открытом поле, Базовые станции больше похожи на вышки, которые имеют красный и белый цвет. А вот в городе такие БС продуманно размещены на крышах нежилых высоток. Эти вышки способны поймать сигнал от любого сотового телефона, находящегося территориально в радиусе не более, чем 35 километров. "Общение" между БС и телефоном происходит через специальный служебный или голосовой канал.

Как только человек набирает нужный ему номер на мобильном устройстве, аппарат находит самую близко расположенную к нему Базовую Станцию поэтому специальному служебному каналу и просит у нее выделить голосовой канал. Вышка после получения запроса от устройства отправляет запрос на так называемый контроллер, который сокращенно будем называть BSC. Этот самый контроллер перенаправляет запрос уже на коммутатор. "Умный" коммутатор MSC определит, к какому оператору подключен вызываемый абонент.

Если оказывается, что звонок совершается на телефон внутри одной сети, например от абонента Билайн другому абоненту этого оператора, или внутри МТС, внутри Мегафон и так далее, то коммутатор начнет выяснять местоположение вызываемого абонента. Благодаря Home Location Register коммутатор найдет, где находится необходимый человек. Он может быть где угодно, дома, на работе, на даче или вообще в другой стране. Это не помешает коммутатору перевести звонок на соответствующий коммутатор. И тут "клубок" начнет "разматываться". То есть звонок от коммутатора - "ответчика" пойдет на контроллер - "ответчика", затем на его Базовую Станцию и на мобильный телефон соответственно.

Если же коммутатор выяснит, что вызываемый абонент принадлежит другому оператору, то отправит запрос на коммутатор уже другой сети.
Согласитесь, схема достаточно простая, но трудно представима. Как "умная" Базовая Станция находит телефон, отправляет запрос, а коммутатор сам определяет оператора и другого коммутатора. Что такое Базовая станция на самом деле? Оказывается, это несколько железных шкафов, которые располагаются либор под самой крышей здания, на чердаке или в специальном контейнере. Главное условие - помещение должно отлично кондиционироваться.

Логично, что у БС есть антенна, которая и помогает ей "ловить" связь. Антенна у БС состоит из нескольких частей (секторов), каждый из которых отвечает за территорию. Часть антенны, которая расположена вертикально отвечает за связь с мобильными телефонами, а круглая предназначены для связи с контроллером.

Один сектор способен одновременно принимать звонки от семидесяти телефонных аппаратов. Если учесть, что одна БС может состоять из шести секторов, то одновременно она спокойно обслужит 6*72=432 звонка.

Как правило, такой мощности Базовой станции хватает "с головой". Конечно, случаются ситуации, когда все население нашей страны начинает одновременно звонить друг другу. Это новый Год. Некоторым достаточно лишь произнести в трубку заветную фразу «С Новым Годом!», другие же готовы проговаривать часы с безлимитным тарифом от "Корпорации Связи" , обсуждая гостей и планы на всю ночь.

Однако вне зависимости от продолжительности разговора, Базовые станции не справляются, и дозвониться до абонента бывает очень сложно. Но в будние дни большую часть года БС из шести секторов вполне достаточно, тем более для оптимальной загруженности оператору подбирают Станции в соответствии с заселенностью территории. Некоторые операторы отдают свое предпочтение большим БС в целях улучшения качества предоставляемой связи.

Существует три диапазона, в которых может работать БС и которые определяют количество поддерживаемых аппаратов и охватываемое расстояние. В диапазоне 900 МГЦ станция способна охватить большую территорию, а вот в диапазоне 1800 МГц расстояние существенно сократится, зато увеличится число подключаемых передатчиков. Третий диапазон в 2100 МГц предполагает уже связь нового поколения - 3G.
Понятно, что в малонаселенных пунктах целесообразнее установить Базовую Станцию на 900 МГц, а вот в городе подойдет 1800 МГц, чтобы лучше проникать сквозь толстые бетонные стены, причем понадобится этих БС в десять раз больше, чем в поселке. Отметим, что одна БС может поддерживать три диапазона сразу.

Станции в режиме 900 МГц охватывают территорию радиусом в 35 км, однако если в данный момент она обслуживает мало телефонов, то может "пробить" и до 70 км. Естественно, наши мобильные телефоны могут "находить" БС даже на расстоянии 70 км. Базовые Станции разработаны так, чтобы максимально покрывать земную поверхность и обеспечивать большое количество людей связью именно на земле, поэтому при возможности ловить сигналы на расстоянии минимум 35 километров, на такое же расстояние, но в небо, Базовые Станции не "пробивают".

Для того, чтобы обеспечить своих пассажиров сотовой связью, некоторые авиакомпании начинают размещать маленькие БС на бортах самолетов. Связь "небесной" Базовой Станции с "земной" осуществляется с помощью спутникового канала. Так как работа мобильных устройств может помешать процессу полета, бортовые БС легко могут включаться / выключаться, имеют несколько режимов работы, вплоть до полного отключения передачи голосовых сообщений. Во время полета телефон может случайно быть переведен на базовую станцию с худшим сигналом или без свободных каналов. В таком случае звонок прервется. Все это тонкости работы сотовой связи в небе в движении.

Помимо самолетов, некоторые проблемы возникают и у жителей пентхаусов. Даже безлимитный тариф и ВИП - условия у оператора сотовой связи не помогут в случае разных БС. Житель квартиры на высоком этаже, переходя из одной комнаты в другую, потеряет связь. Это может произойти из-за того, что телефон в одной комнате "видит" одну БС, а в другой он "обнаруживает" другую. Поэтому при разговоре связь прерывается, так как эти БС находятся на относительном расстоянии друг от друга и даже не считаются "соседними" у одного оператора.

Остаемся в зоне доступа в нестандартных ситуациях.

В мире есть очень много мест, где традиционной смартфон с симкой российского оператора не работает. Эта статья поможет вам всегда быть на связи, ответив на три вопроса:

  • Как узнать какие операторы будут работать в том месте куда вы собираетесь
  • Как выбрать альтернативу обычной мобильной связи
  • Как принимать/отправлять смски через интернет (и как его найти)

Как узнать будет ли ловить 2G/3G/4G в месте Х (Россия)?

Мой жизненный опыт говорит о том, что картам зон покрытия на сайтах операторов стоит доверять не всегда. Они временами несколько приукрашивают действительность. Как узнать, будет ли телефон 100% работать в тех местах, в которые собираешься ехать?

В январе этого года Минкомсвязь взялась за решение вопроса и создала сервис, который отображает информацию о качестве приема сигнала разными операторами. Попробовать можно на geo.minsvyaz.ru .

Данные собираются добровольцами. Им может стать каждый владелец Android-телефона, если установит приложение для мониторинга качества связи. На карте можно сравнивать одновременно четырех операторов (выбрав их из 14). Сиреневым цветом обозначены зоны покрытия 4G, зеленым 3G, а оранжевым 2G.

Как узнать будет ли ловить 2G/3G/4G в месте Х (другие страны)?

Минкомсвязь не первая, кто придумал сделать подобное приложение. Уже много лет подряд таким же образом информацию о связи собирает исследовательская компания Open Signal.

Какой телефон взять в кругосветку?


Что делать, если в интересующем вас месте не работают никакие сотовые операторы? Быть готовым немного потратиться. Например, Федор Конюхов всегда на связи. Ведь у него есть несколько спутниковых телефонов.

Провайдер лидер в этой сфере - Iridium . Его зона покрытия - вся планета. Цены на новые телефоны начинаются от 75 тысяч рублей (в комплект входят зарядка с переходниками на пять розеток и автомобильная антенна). А спутниковый роутер с возможностью подключения не более пяти устройств обойдется в 65 тысяч. Еще надо оплачивать непосредственно услуги связи: 1000 минут разговора/доступа в интернет обойдется в 23 800 рублей.

Чуть меньше зона покрытия у Inmarsat . На полюсах он работать не будет. Оборудования для использование сети незначительно дешевле Iridium.

У других операторов можно найти аппараты от 25 тысяч рублей и тарифы доступнее. Но перед покупкой надо внимательно сверить зону покрытия с картой своих будущих путешествий, так как по этому параметру они отстают от лидеров. Например, Турайя не охватывает огромную (самую интересную) северо-восточную часть России.

Кстати, только что упомянутый провайдер продает очень интересную штучку - насадку на iPhone SatSteel (к сожалению, я нашла предложения только для 4 и 4S), которая позволяет использовать на смартфоне Apple спутниковую связь.

Если никто из тех людей с которыми вы едете в путешествие еще не купил ни одного средства спутниковой связи, то можно значительно сэкономить, взяв его в аренду .

В отсутсвие сотовой связи ее с успехом заменяет интернет.

Как узнать ловит ли Wi-Fi в месте X?


О сервисе wigle.net я уже писала в статье . В его базе есть четверть миллиарда точек доступа по всему миру. Их расположение можно посмотреть на карте.

Интересно ознакомиться со статистикой по странам . Каждая пятая точка доступа (53 миллиона) расположена в США. В России их 2,5 миллиона, а в Узбекистане только 239 (уверена, что в реальности больше).

Как узнать будет ли Wi-Fi в самолете?

На routehappy.com можно проверить имеется ли Wi-Fi на борту рейса, которым вы собираетесь лететь (а также узнать можно ли там заряжать свои устройства и велико ли расстояние между креслами).

Как принимать/отправлять SMS онлайн?


О том, как бесплатно совершать звонки через интернет вы знаете и без меня. И отправлять бесплатные сообщение на сайтах операторов тоже. А умеете ли вы принимать смски на российский номер онлайн?

Это знание пригодится, если однажды какой-то сайт потребует для регистрации ввести код подтверждения, а вы будеть лететь в самолете или находится за границей, оставив российскую симку дома. Или если вам нужен будет еще один аккаунт в соцсети, а второго телефона у вас нет.



Понравилась статья? Поделиться с друзьями: